首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fenton‐ and photo‐assisted Fenton advanced oxidation processes generate reactive oxygen species from hydrogen peroxide and are candidates for the remediation of dye wastewaters. The purpose of this study was to investigate interactions of iron (III) with hydroxyazo dyes. The o‐hydroxyazo dyes Acid Orange 7 (AO7; 4‐[(2‐hydroxynaphthalen‐1‐yl)azo]benzenesulfonic acid sodium salt) and Acid Orange 10 (AO10; 7‐hydroxy‐8‐(phenylazo)naphthalene‐1,3‐disulfonic acid disodium salt) represent dyes allegedly able to chelate FeIII through the chromophore. The p‐hydroxyazo dye Acid Orange 20 (AO20; 4‐[(4‐hydroxynaphthalen‐1‐yl)azo]benzenesulfonic acid sodium salt) represents an analogous structure that is unable to chelate FeIII due to the position of the OH group. Reactions were carried out at pH 2 – 3 in perchlorate or chloride media in the absence of peroxide. No evidence was found by UV/VIS spectroscopy for complexation of FeIII by the o‐hydroxyazo chromophore. Instead, FeIII apparently coordinated or formed an ion pair with the sulfonate group, and, when only one sulfonate group was present (i.e., AO7), the dye formed a co‐precipitate with iron(III) hydrous oxides and perchlorate ion. Dye precipitation was seeded by colloidal iron hydrolysis product nuclei. By contrast, the p‐hydroxyazo dye (AO20) was rapidly oxidized by iron(III). The net Fe2+/oxidized AO20 ratio was 2 : 1, and a minor yield of 1,4‐naphthoquinone was obtained. The major initial oxidation product, which was not identified, formed a reversible complex with Fe2+. Results of this study indicate that the effectiveness of Fenton‐based methods for treating certain azo dyes that form insoluble ferric salts may be compromised by removal of the catalyst from solution. However, the degradation of certain other azo dyes might be assisted by direct thermal oxidation by iron(III).  相似文献   

2.
Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material. Batch experiments indicated that this novel material exhibited excellent degradation ability for 0.05 g·L1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely. For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time. During the degradation process, Fe2 , the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing. The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI. Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.  相似文献   

3.
The kinetics and mechanisms of the oxidative degradation of 2,4‐dihydroxybenzoic acid (2,4‐DHBA) by the Fenton and photo‐Fenton processes were investigated in detail by a combination of HPLC, IC, and TOC analyses. The formation of 2,3,4‐trihydroxybenzoic acid (2,3,4‐THBA) at an early oxidation stage shows that hydroxylation of the aromatic ring is the first step of the process. This intermediate was able to reduce FeIII and to contribute to the recycling of FeII. Complete mineralization could only be achieved under irradiation (photo‐Fenton). A detailed study of the dependence of the rate of mineralization on the concentration of H2O2 and dissolved O2 was carried out. It was found that, even at a low initial concentration of H2O2, mineralization by the photo‐Fenton process was complete in a relatively short time, provided that the O2 concentration was high enough, indicating that O2 may, at least in part, substitute H2O2. Channeling reaction pathways toward O2 rather than H2O2 consumption is of particular interest for the technical development of the photo‐Fenton process.  相似文献   

4.
Redox cycling of iron is a critical aspect of iron toxicity. Reduction of a low‐molecular‐weight iron(III)‐complex followed by oxidation of the iron(II)‐complex by hydrogen peroxide may yield the reactive hydroxyl radical (OH.) or an oxoiron(IV) species (the Fenton reaction). Complexation of iron by a ligand that shifts the electrode potential of the complex to either to far below ?350 mV (dioxygen/superoxide, pH=7) or to far above +320 mV (H2O2/HO., H2O pH=7) is essential for limitting Fenton reactivity. The oral chelating agents CP20, CP502, CP509, and ICL670 effectively remove iron from patients suffering from iron overload. We measured the electrode potentials of the iron(III) complexes of these drugs by cyclic voltammetry with a mercury electrode and determined the dependence on concentration, pH, and stoichiometry. The standard electrode potentials measured are ?620 mV, ?600 mV, ?535 mV, and ?535 mV with iron bound to CP20, ICL670, CP502, and CP509, respectively, but, at lower chelator concentrations, electrode potentials are significantly higher.  相似文献   

5.
改性PTFE纤维金属配合物的制备及其光催化降解性能   总被引:1,自引:0,他引:1  
使用聚丙烯酸接枝改性聚四氟乙烯(PAA-g-PTFE)纤维分别与Fe3+及其与Cu2+的混合物反应制备改性PTFE纤维铁和铁铜双金属配合物, 并分别使用傅里变换叶红外(FTIR)光谱和紫外-可见(UV-Vis)漫反射光谱(DRS)对两种配合物的化学结构和光吸收性能进行表征. 然后将两种配合物分别作为非均相光Fenton 反应催化剂应用于典型偶氮染料活性蓝222氧化降解反应中, 考察和比较了二者在不同pH介质中对降解反应的催化作用. 结果表明, 在有或无Cu2+的存在条件下, 一个Fe3+能够与三个PAA-g-PTFE表面的6个羧基发生反应形成配合物, 并且它们在紫外和可见光区表现出好的光吸收特性. 当两种金属离子共存时Cu2+比Fe3+更容易与PAA-g-PTFE发生配位反应形成铁铜双金属配合物. 在可见光辐射下PAA-g-PTFE铁配合物对不同pH水溶液中染料降解反应均表现出显著的催化作用, 但是溶液pH的升高不利于配合物催化活性的发挥. 而配合物中铁离子含量提高特别是引入Cu2+作为助金属离子能够较大幅度地改善其在高pH范围内的催化活性和重复利用性.  相似文献   

6.
Degradation of acridine orange (AO) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. The effects of different reaction parameters such as initial AO concentration, pH value of solution, ferrous concentration, hydrogen peroxide concentration, and the presence of chloride ion on the oxidative degradation of AO were investigated. Under optimum conditions, 2 mM H2O2, 0.4 mM Fe2+ and pH 3.0, the initial 0.2 mM AO solution was reduced by 95.8% within 10 min. The primary intermediates of the degradation reaction of AO were identified. The analytical results indicated that the N‐de‐methylation degradation of AO dye took place in a stepwise manner to yield mono‐, di‐, tri‐, and tetra‐N‐de‐methylated AO species generated during the Fenton process. The probable degradation pathways were proposed and discussed.  相似文献   

7.
We report here the electrocatalytic reduction of oxygen on thin anthraquindisulfonate (AQDS)/poplypyrrole (PPy) composite film modified electrodes and its application to the electrooxidation of azo dye‐amaranth. The polymer‐coated cathode exhibited good electrocatalytic activity towards oxygen reduction reaction (ORR), and allowed the formation of strong oxidant hydroxyl radical (.OH) in the medium via Electro‐Fenton's reaction between cathodically generated H2O2 and added or regenerated Fe2+. The electrochemical behaviors of ORR in various pH solutions were described using cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometric (CA) techniques. The effect of solution pH on amaranth mineralization by the Fe2+/H2O2 and Fe3+/H2O2 electrooxidation systems was studied. In addition, the long‐term electrocatalytic activity and stability of the AQDS/PPy composite film during multiple experimental runs were also examined electrochemically.  相似文献   

8.
Cu2+ and Fe3+ significantly improved the Orange II photobleaching and mineralization in the presence of oxone. In the presence of Cu2+ and Fe3+ the oxone needed for the photobleaching and total mineralization of the dye was determined along other solution parameters. In air, the photobleaching of Orange II in solution was observed to be complete within 60 min for Cu2+-ions and 30 min for Fe3+-ions showing a considerable faster kinetics with respect to other treatment systems reported until now. The transition metal-ions used seem to couple with oxone forming high oxidizing sulfate species. A reaction mechanism leading to Orange II photobleaching is suggested through a complex formation between the metal-ion and Orange II involves redox reactions activated by visible light.  相似文献   

9.
Degradation of Congo Red (CR) a di azo dye in aqueous solution is investigated by a Photo Fenton like process using Fe3+ ions as the catalyst and peroxy disulfate as the oxidant. The influence of various reaction parameters like, concentration of Fe3+ ions, concentration of the dye, concentration of ammonium persulfate, pH of the solution and the presence of hydroxyl radical scavenger are studied and optimal conditions are reported. The degradation rate decreased at higher dye concentration and at higher pH. The rate constant (k), catalytic efficiency (kc) and process efficiency (Φ) are evaluated for different concentration of Fe3+ ions. The degradation of CR by the photo Fenton like process leads to the formation of 4-Amino, 3-azo naphthalene sulphonic acid, dihydroxy substituted naphthalene, dihydroxy substituted biphenyl, phenol, quinol etc., as intermediates, based on which probable degradation mechanism is proposed. These results show that a photo Fenton like process could be useful technology for the mineralization of di azo dyes under lower concentration of iron in acidic conditions. The present process is advantageous as it lowers the sludge production resulting from the iron comple   相似文献   

10.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

11.
Carbon fiber (CF)‐based WO3/TiO2 composite catalysts (WO3/TiO2/CF) were successfully synthesized by solvothermal method. The catalysts were characterized by XPS, SEM, BET, XRD, FTIR, Raman and UV–Vis. The analyses confirmed the WO3/TiO2 nanoparticles with high crystallinity deposited on the carbon structure. The photocatalytic degradation of Orange II azo dye under UV and sunlight illumination with the synthesized catalyst was explored. The composite catalyst displayed high performance (85%) for Orange II degradation while that of for WO3/TiO2 was found as 76%. The effects of CF amount, solution pH, initial dye concentration and catalyst dose on photocatalytic performance were studied. It was found that the degradation efficiency increased from 68% to 90% with the increasing CF amount from 3 wt% to 5 wt%, while the further increase in CF amount (7–10 wt%) decreased the photodegradation due to the blocking the active sites of WO3/TiO2. The enhanced photocatalytic efficiency was mainly attributed to the electrical properties of the CF and reduced bandgap.  相似文献   

12.
Hexaflumuron, one of the benzoylphenylurea insect growth regulators, can be leached into surface water and thus having a potential impact on aquatic organisms. In this study, the photodegradation processes of hexaflumuron under high‐pressure mercury lamp irradiation were assessed. The photodegradation kinetics were studied, as were the effects of pH, different light sources, organic solvents and environmental substances, including nitrate ions (NO3?), nitrite ions (NO2?), ferrous ions (Fe2+), ferric ions (Fe3+), humic acid, sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2). Three photodegradation products in methanol were identified by gas chromatography‐mass spectrometry (GC‐MS). In general, the degradation of hexaflumuron followed first‐order kinetics. In the four media studied, the photodegradation rate order was n‐hexane > methanol > ultrapure water > acetone. Faster degradation was observed under high‐pressure mercury lamp irradiation than under xenon lamp irradiation. The pH had a considerable effect, with the most rapid degradation occurring at pH 5.0. The photodegradation rate of hexaflumuron was promoted in the presence of NO3?, NO2?, Fe2+, humic acid, SDS and H2O2, but inhibited by Fe3+. Moreover, the presumed photodegradation pathway was proposed to be the cleavage of the urea linkage.  相似文献   

13.
The interactions of two model phosphoproteins (porcine pepsin and ovalbumin) with two different immobilized metal affinity chromatography (IMAC) sorbents containing immobilized Fe3+, Ga3+, and UO2 2+ ions have been investigated under various conditions. Both proteins were adsorbed on immobilized uranyl ions under acidic conditions similar to those on immobilized Fe3+ and Ga3+ ions. The retained proteins could be released either by the presence of phosphate ions in the elution buffer (immobilized Ga3+ and Fe3+ ions) or by an increased pH (all tested immobilized ions). The IMAC sorbents employed could be used under the conditions of high-performance chromatography and are suitable for the separation and analysis of intact phosphoproteins.  相似文献   

14.
Water pollution derived from organic pollutants is one of the global environmental problems. The Fenton reaction using Fe2+ as a homogeneous catalyst has been known as one of clean methods for oxidative degradation of organic pollutants. Here, a layered double hydroxide (Fe2+Al3+-LDH) containing Fe2+ and Al3+ in the structure was used to develop a “heterogeneous” Fenton catalyst capable of mineralizing organic pollutants. We found that sulfate ion (SO42−) immobilized on the Fe2+Al3+-LDH significantly facilitated oxidative degradation (mineralization) of phenol as a model compound of water pollutants to carbon dioxide (CO2) in a heterogeneous Fenton process. The phenol conversion and mineralization efficiency to CO2 reached >99% and ca. 50%, respectively, even with a reaction time of only 60 min.  相似文献   

15.
In the present study, we carried out a chemical synthesis and characterization of Fe3O4@PEG‐Au as a core/shell nanocomposite in an aqueous solution by the chemical co‐precipitation of Fe3+ and Fe2+ ions and encapsulated it by polyethylene glycol (PEG) in order to enhance hydrophilicity and biocompatibility of gold ions and immobilize them in the presence of NaBH4 as a reducing agent. The nanostructures were characterized with FT‐IR, FESEM, EDS, WDX, VSM, ICP‐MS, and TEM. The antimicrobial activities of the nanostructures were tested against pathogenic microorganisms, including Staphylococcus aureus , Escherichia coli , and Candida albicans by broth microdilution method according to the methods of the Clinical Laboratory Standard Institute (CLSI). The toxicity of the nanostructures was tested against animal cell line based on MTT assay. The synthesized core/shell nanostructures had a good activity against the representative microorganisms of public health concern and revealed an insignificant toxicity against animal cell line.  相似文献   

16.
Herein, we report a versatile surface chemistry methodology to covalently immobilize ligands and proteins to self‐assembled monolayers (SAMs) on gold electrode. The strategy is based on two steps: 1) the coupling of soluble azido‐PEG‐amimo ligand with an alkynyl‐terminated monolayer via click reaction and 2) covalent immobilization hemoglobin (Hb) to the amine‐terminated ligand via carbodiimide reaction. Surface‐enhanced Raman scattering spectroscopy (SERS), atomic force microscopy (AFM), reflection absorption infrared spectroscopy (RAIR) and cyclic voltammetry are used to characterize the model interfacial reactions. We also demonstrate the excellent biocompatibility of the interface for Hb immobilization and reliable application of the proposed method for H2O2 biosensing. Moreover, the redox thermodynamics of the Fe3+/Fe2+ couple in Hb is also investigated.  相似文献   

17.
In this study, the effect of pH values on the microstructure and photocatalytic activity of Ce‐Bi2O3 under visible light irradiation was investigated in detail. In alkaline condition (e.g. pH = 9), the as‐prepared Ce‐Bi2O3 exhibited an agglomerated status and mesoporous structures without a long‐range order. While in weak acid condition (e.g. pH = 5), the Ce‐Bi2O3 exhibited a best morphology with irregular nanosheets. Correspondingly, it possessed largest surface area (24.641 m2 g?1) and pore volume (9.825E‐02 cm3 g?1). These unique nanosheets can offer an attachment for pollutant molecules and reduce the distance of electron immigration from inner to surface, thus facilitating the separation of photoelectron and hole pairs. Compared with the pure Bi2O3, the band gap of Ce‐Bi2O3 prepared at different pH was much lower. Among them, the band gap of Ce‐Bi2O3 (pH of 5) was lowest (2.61 eV). Ce‐Bi2O3 (pH of 5) exhibited as tetragonal crystal with the bismuth oxide in the form of the composites, which could reduce the band gap width or suppress the charge‐carrier recombination, subsequently possessing great photocatalytic activity for acid orange II under visible light irradiation. After 2 h degradation under visible light, the degradation rate of acid Orange II was up to 96.44% by Ce‐Bi2O3 prepared at pH 5. Overall, it can be concluded that the pH values had effects on the microstructure and photocatalytic activity of Ce‐Bi2O3 catalysts.  相似文献   

18.
The iron(II) complex of H2L (H2L=3, 14‐dimethyl‐4, 7, 10, 13‐tetraazahexadeca‐3,13‐diene‐2,15‐dione dioxime, Coord. Chem. Rev., 33, 87 (1980)) is oxidized by periodate very rapidly in the range pH 2.0–7.0, and the kinetics of the reaction has been followed by stopped‐flow spectrophotometry at 30°C and ionic strength I=0.20 mol L−1 (NaClO4). The reaction is found to follow a simple second‐order kinetics as −d/dt [FeII(H2L)2+]=k [FeII(H2L)2+] [I(VII)], giving [FeIII(L)]+ and IO3 as the final products. The reaction has been proposed to occur through a H‐bonded transition state formed probably between the protonated oxime group of the ligand and the oxygen atom on the periodate species, followed by an electron transfer from FeII centre to IVII in a rate‐determining step. The IVI species thus generated reacts in a fast step with another FeII complex. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 23–28, 1999  相似文献   

19.
The catalytic activity of the N‐tailed (“biuret”) TAML (tetraamido macrocyclic ligand) activators [Fe{4‐XC6H3‐1,2‐( N COCMe2 N CO)2NR}Cl]2? ( 3 ; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me ( a ); NO2, Me ( b ); H, Ph ( c )] in the oxidative bleaching of Orange II dye by H2O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4‐XC6H3‐1,2‐( N COCMe2 N CO)2CMe2}OH2]? ( 1 ) and the more aggressive analogue [Fe(Me2C{CON(1,2‐C6H3‐4‐X) N CO}2)OH2]? ( 2 ). Catalysis by 3 of the reaction between H2O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kIkII[FeIII][S][H2O2]/(kI[H2O2]+kII[S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b > 3 a > 3 c . The pH dependency of kI and kII was investigated for 3 a . As with all TAML activators studied to‐date, bell‐shaped profiles were found for both rate constants. For kI, the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a . For kII, the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI?kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a – c were calculated using the general formula ln([S0]/[S])=(kII/ki)[FeIII]; here [FeIII], [S0], and [S] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X‐ray characterization of 3 c are also described.  相似文献   

20.
In this work, we developed phosphate functionalized magnetic Fe3O4@C microspheres to immobilize Zr4+ ions for selective extraction and concentration of phosphopeptides for mass spectrometry analysis. Firstly, we synthesized Fe3O4@C magnetic microspheres as our previous work reported. Then, the microspheres were functionalized with phosphate groups through a simple hydrolysis reaction using 3-(trihydroxysilyl)propyl methylphosphate. And the Zr4+ ions were immobilized on phosphate-functionalized magnetic microspheres by using phosphate chelator. Finally, we successfully employed Zr4+-phosphate functionalized magnetic microspheres to selectively isolate the phosphopeptides from tryptic digests of standard protein and real samples including rat brain. All the experimental results demonstrate the enrichment efficiency and selectivity of the method we reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号