首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration of trace and rare earth elements (REEs) in soils. Geochemical certified reference materials such as JLk-1, JB-1, and JB-3 were used for the validation of the analytical method. The measured values were in good agreement with the certified values for all the elements and were within 10% analytical error. Beach placer deposits of soils mainly from Odisha, on the east coast of India, have been selected to study selected trace and rare earth elements (REEs), to estimate enrichment factor (EF) and geoaccumulation index (Igeo) in the natural environment. Enrichment factor (EF) and geoaccumulation index (Igeo) results showed that Cr, Mn, Fe, Co, Zn, Y, Zr, Cd and U were significantly enriched, and Th was extremely enriched. The total content of REEs (ƩREEs) ranged from 101.3 to 12,911.3 µg g−1, with an average 2431.1 µg g−1 which was higher than the average crustal value of ΣREEs. A high concentration of Th and light REEs were strongly correlated, which confirmed soil enrichment with monazite minerals. High ratios of light REEs (LREEs)/heavy REEs (HREEs) with a strong negative Eu anomaly revealed a felsic origin. The comparison of the chondrite normalized REE patterns of soil with hinterland rocks such as granite, charnockite, khondalite and migmatite suggested that enhancement of trace and REEs are of natural origin.  相似文献   

2.
Despite unifloral honeys from Sardinia, Italy, being appreciated worldwide for their peculiar organoleptic features, their elemental signature has only partly been investigated. Hence, the principal aim of this study was to measure the concentration of trace and toxic elements (i.e., Ag, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, V, and Zn) in four unifloral honeys produced in Sardinia. For this purpose, an original ICP-MS method was developed, fully validated, and applied on unifloral honeys from asphodel, eucalyptus, strawberry tree, and thistle. Particular attention was paid to the method’s development: factorial design was applied for the optimization of the acid microwave digestion, whereas the instrumental parameters were tuned to minimize the polyatomic interferences. Most of the analytes’ concentration ranged between the relevant LoDs and few mg kg−1, while toxic elements were present in negligible amounts. The elemental signatures of asphodel and thistle honeys were measured for the first time, whereas those of eucalyptus and strawberry tree honeys suggested a geographical differentiation if compared with the literature. Chemometric analysis allowed for the botanical discrimination of honeys through their elemental signature, whereas linear discriminant analysis provided an accuracy level of 87.1%.  相似文献   

3.
The olive oil industry is subject to significant fraudulent practices that can lead to serious economic implications and even affect consumer health. Therefore, many analytical strategies have been developed for olive oil’s geographic authentication, including multi-elemental and isotopic analyses. In the first part of this review, the range of multi-elemental concentrations recorded in olive oil from the main olive oil-producing countries is discussed. The compiled data from the literature indicates that the concentrations of elements are in comparable ranges overall. They can be classified into three categories, with (1) Rb and Pb well below 1 µg kg−1; (2) elements such as As, B, Mn, Ni, and Sr ranging on average between 10 and 100 µg kg−1; and (3) elements including Cr, Fe, and Ca ranging between 100 to 10,000 µg kg−1. Various sample preparations, detection techniques, and statistical data treatments were reviewed and discussed. Results obtained through the selected analytical approaches have demonstrated a strong correlation between the multi-elemental composition of the oil and that of the soil in which the plant grew. The review next focused on the limits of olive oil authentication using the multi-elemental composition method. Finally, different methods based on isotopic signatures were compiled and critically assessed. Stable isotopes of light elements have provided acceptable segregation of oils from different origins for years already. More recently, the determination of stable isotopes of strontium has proven to be a reliable tool in determining the geographical origin of food products. The ratio 87Sr/86Sr is stable over time and directly related to soil geology; it merits further study and is likely to become part of the standard tool kit for olive oil origin determination, along with a combination of different isotopic approaches and multi-elemental composition.  相似文献   

4.
Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method’s correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070–0.0498 μg kg−1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 μg kg−1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.  相似文献   

5.
A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.  相似文献   

6.
This work presents a simple and innovative protocol employing a microfluidic paper-based analytical device (µPAD) for equipment-free determination of mercury. In this method, mercury (II) forms an ionic-association complex of tetraiodomercurate (II) ion (HgI42−(aq)) using a known excess amount of iodide. The residual iodide flows by capillary action into a second region of the paper where it is converted to iodine by pre-deposited iodate to liberate I2(g) under acidic condition. Iodine vapor diffuses across the spacer region of the µPAD to form a purple colored of tri-iodide starch complex in a detection zone located in a separate layer of the µPAD. The digital image of the complex is analyzed using ImageJ software. The method has a linear calibration range of 50–350 mg L−1 Hg with the detection limit of 20 mg L−1. The method was successfully applied to the determination of mercury in contaminated soil and water samples which the results agreed well with the ICP-MS method. Three soil samples were highly contaminated with mercury above the acceptable WHO limits (0.05 mg kg−1). To the best of our knowledge, this is the first colorimetric µPAD method that is applicable for soil samples including mercury contaminated soils from gold mining areas.  相似文献   

7.
This paper presents for the first time the use of an environmentally friendly solid bismuth microelectrode for the voltammetric quantification of V(V) in natural water samples. These studies were designed to replace the film bismuth electrode that had been introduced to eliminate the conventional sensors based on highly toxic mercury. In the proposed procedure, V(V) is preconcentrated at the solid bismuth microelectrode surface via the formation of electroactive complexes with cupferron from a solution of 0.1-mol L−1 acetate buffer, pH = 4.6 at a potential of −0.4 V. The linearity of the calibration graph is in the V(V) concentration range from 8 × 10−10 to 1 × 10−7 mol L−1 with a preconcentration time of 1 min. The limit of detection (calculated as 3 σ) is 2.5 × 10−10 mol L−1 for a preconcentration time of 1 min. It was also demonstrated that significant improvement in analytical parameters was achieved as a result of the activation of the solid electrode surface at a potential of −2.5 V for 2 s. The developed procedure is highly selective for the presence of foreign ions and organic compounds in tested samples. The accuracy of the recommended procedure was checked using SPS-WW1 waste water-certified reference materials of a complex composition, in which the concentration of V(V) determined by the proposed method was 95.1 ± 1.6 ng mL−1. Moreover, in keeping with the outlined procedure, river, tap and rain water samples were analyzed without any pretreatment, and recovery values from 96% to 106% were obtained.  相似文献   

8.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used extensively as a rapid and accurate instrumental technique for determinations of platinum group elements (PGEs) and gold. Methods based upon ICP-MS have been important in analyses of many types of samples, and especially of geological materials containing very low concentrations of these elements. Recently, analytical methods based upon ICP-MS have been improved and widened in scope by the introduction of new magnetic sector (or high resolution) spectrometers, and laser ablation (LA) sampling. Detection limits attainable for PGEs and Au using magnetic sector instruments in analytical procedures cited here are as low as 0.01-0.02 pg g−1; instruments have a dynamic range of up to nine orders of magnitude. This review describes applications of the techniques to analyses of PGEs and gold in minerals, nodules, meteorites, ice, sediments, airborne particulates and reference materials. The period covered is 1998-2002.  相似文献   

9.
N-(n-butyl) thiophosphoric triamide (NBPT) is a urease inhibitor utilised in urea-based fertilizers. In Ireland, fertilizer treated with NBPT is applied to pasture to mitigate both ammonia and nitrous oxide emissions, but concerns arise as to the potential for residues in milk products. A quick ultrafiltration extraction and ultra-high performance liquid chromatography coupled with mass spectrometry triple quadrupole (UHPLC-MS/MS) quantitation method was developed and validated in this study. The method was applied in the analysis of samples collected from a field study investigating potential transfer of NBPT residues into milk. NBPT and NBPTo residues, were extracted from fortified milk samples and analysed on a UHPLC-MS/MS with recoveries ranging from 74 to 114%. Validation of the UHPLC-MS/MS method at low (0.0020 mg kg−1) and high (0.0250 mg kg−1) concentration levels in line with SANTE/12682/2019 showed overall trueness in the range of 99 to 104% and precision between 1 and 10%, RSD for both compounds. The limit of quantitation (LOQ) was 0.0020 mg kg−1 and other tested parameters (linearity, sensitivity, specificity, matrix effect, robustness, etc.) satisfied acceptance criteria. Stability assessment using spiked samples revealed the compounds were stable in raw and pasteurised milk for 4 weeks at –80 °C storage temperature. Maintaining samples at pH 8.5–9.0 further improved stability. Analysis of 516 milk samples from the field study found that NBPT and NBPTo concentrations were below the LOQ of 0.0020 mg kg−1, thus suggesting very low risk of residues occurring in the milk. The method developed is quick, robust, and sensitive. The method is deemed fit-for-purpose for the simultaneous determination of NBPT and NBPTo in milk.  相似文献   

10.
《Analytical letters》2012,45(7):1201-1209
An analytical method for the quantification of toxic metals in face-powders is presented and discussed. Acid digestion with HNO3-H2O2 or HNO3-HCl was performed and compared with total digestion by HF. The digestion with HNO3-H2O2 was the most suitable for these purposes. Analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), whose performances were compared by analyzing three different certified reference materials. The analysis of five commercial face-powders revealed the presence of all the considered metals in the range 0.06–8.0 µg/g. To simulate the bioaccessibility of metals in physiological conditions, a digestion with a simulated sweat solution was performed. In this case, the analysis of the same face-powder samples provided results below the limit of quantification, suggesting low bioaccessibility of the considered trace elements.  相似文献   

11.
In recent years, mushrooms have drawn the attention of agro-industries and food-industries as they were considered to be valuable natural sources of health promoting compounds such as β-glucans, ergothioneine, and lovastatin. The detection and quantification of such compounds by implementing reliable analytical approaches is of the utmost importance in order to adjust mushrooms’ cultivation conditions and maximize the production in different species. Toward this direction, the current study focuses on the comparison of ultraviolet–visible (UV–Vis) spectrometry and liquid chromatography–mass spectrometry (LC–MS) methods (a) by evaluating the content of ergothioneine and lovastatin in mushrooms and (b) by highlighting any possible substrate-based interferences that hinder the accurate determination of these two compounds in order to propose the technique-of-choice for a standardized bioactive compounds monitoring. For this purpose, mushrooms produced by three species (i.e., Agaricus bisporus, Pleurotus ostreatus, and P. citrinopileatus) on various cultivation substrates, namely wheat straw (WS), winery (grape marc (GM)), and olive oil (OL) by-products, were examined. Among the two applied techniques, the developed and validated LC–MS methods, exhibiting relatively short analysis time and higher resolution, emerge as the methods-of-choice for detecting ergothioneine and lovastatin in mushrooms. On the contrary, UV–Vis methods were hindered due to co-absorbance of different constituents, resulting in invalid results. Among the studied mushrooms, P. citrinopileatus contained the highest amount of ergothioneine (822.1 ± 20.6 mg kg−1 dry sample), whereas A. bisporus contained the highest amounts of lovastatin (1.39 ± 0.014 mg kg−1 dry sample). Regarding the effect of different cultivation substrates, mushrooms produced on OL and WS contained the highest amount of ergothioneine, while mushrooms deriving from GM-based substrates contained the highest amount of lovastatin.  相似文献   

12.
Salt concentrations in brine and temperature are the major environmental factors that affect activity of microorganisms and, thus may affect formation of biogenic amines (BAs) during the fermentation process. A model system to ferment cucumbers with low salt (0.5%, 1.5% or 5.0% NaCl) at two temperatures (11 or 23 °C) was used to study the ability of indigenous microbiota to produce biogenic amines and metabolize amino acid precursors. Colony counts for presumptive Enterococcus and Enterobacteriaceae increased by 4 and up to 2 log of CFU∙mL−1, respectively, and remained viable for more than 10 days. 16S rRNA sequencing showed that Lactobacillus and Enterobacter were dominant in fermented cucumbers with 0.5% and 1.5% salt concentrations after storage. The initial content of BAs in raw material of 25.44 ± 4.03 mg∙kg−1 fluctuated throughout experiment, but after 6 months there were no significant differences between tested variants. The most abundant BA was putrescine, that reached a maximum concentration of 158.02 ± 25.11 mg∙kg−1. The Biogenic Amines Index (BAI) calculated for all samples was significantly below that needed to induce undesirable effects upon consumption. The highest value was calculated for the 23 °C/5.0% NaCl brine variant after 192 h of fermentation (223.93 ± 54.40). Results presented in this work indicate that possibilities to control spontaneous fermentation by changing salt concentration and temperature to inhibit the formation of BAs are very limited.  相似文献   

13.
建立了HNO3-HCl O4-HF混合酸溶样,电感耦合等离子体质谱法同时测定磷矿石中的锰、铜、铅、锌、铬和镉等6个微量重金属元素的有效方法.试验中对仪器的最佳工作参数进行了优化,选择适当的同位素,并用铑作内标元素,有效地抑制了分析信号的漂移.在选定的条件下,对样品进行了精密度和回收率试验,方法相对标准偏差(RSD,n=9)为0.99%~1.98%,加标回收率为98.0%~102.0%.  相似文献   

14.
The analytical performance of the clay paste electrode and graphene paste electrode was compared using square wave voltammetry (SWV) and cyclic voltammetry (CV). The comparison was made on the basis of a paracetamol (PA) determination on both working electrodes. The influence of pH and SWV parameters was investigated. The linear concentration ranges were found to be 6.0 × 10−7–3.0 × 10−5 and 2.0 × 10−6–8.0 × 10−5 mol L−1 for clay paste electrode (ClPE) and graphene paste electrode (GrPE), respectively. The detection and quantification limits were calculated as 1.4 × 10−7 and 4.7 ×10−7 mol L−1 for ClPE and 3.7 × 10−7 and 1.2 × 10−6 mol L−1 for GrPE, respectively. Developed methods were successfully applied to pharmaceutical formulations analyses. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize ClPE and GrPE surfaces. Clay composition was examined with wavelength dispersive X-ray (WDXRF).  相似文献   

15.
Bioinsecticides are regarded as important alternatives for controlling agricultural pests. However, few studies have determined the persistence of these compounds in stored grains. This study aimed at optimizing and validating a fast and effective method for extraction and quantification of residues of safrole (the main component of Piper hispidinervum essential oil) in cowpea beans. It also sought to assess the persistence of this substance in the grains treated by contact and fumigation. The proposed method used headspace solid-phase microextraction (HS-SPME) and gas chromatography with a flame ionization detector (GC/FID). Factors such as temperature, extraction time and type of fiber were assessed to maximize the performance of the extraction technique. The performance of the method was appraised via the parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy. The LOD and LOQ of safrole were 0.0057 and 0.019 μg kg−1, respectively and the determination coefficient (R2) was >0.99. The relative recovery ranged from 99.26 to 104.85, with a coefficient of variation <15%. The validated method was applied to assess the persistence of safrole residue in grains, where concentrations ranged from 1.095 to 0.052 µg kg−1 (contact) and from 2.16 to 0.12 µg kg −1 (fumigation). The levels measured up from the fifth day represented less than 1% of the initial concentration, proving that safrole have low persistence in cowpea beans, thus being safe for bioinsecticide use. Thus, this work is relevant not only for the extraction method developed, but also for the possible use of a natural insecticide in pest management in stored grains.  相似文献   

16.
In this study, a new method for selective determination of Cr(VI) in water samples at pH 4 is presented using raffinose capped silver nanoparticles (Ag/Raff NPs) as an optical sensor. The method is based on the variation of LSPR absorption band intensity as a result of electrostatic interaction between the negatively charged Ag/Raff NPs and positive Cr(III) ions, in-situ produced by chemical reduction of Cr(VI) with ascorbic acid, combined with the fast kinetics of Cr(III) coordination to the –OH groups of the capping agent on the nanoparticle surface, further causing the nanoparticle aggregation. The calibration curve for Cr(VI) is linear in the range 2.5–7.5 μmol L−1, the limit of quantification achieved is 1.9 μmol L−1, and values of relative standard deviation vary from 3 to 5% for concentration level 1.9–7.5 μmol L−1. The interference studies performed in the presence of various metal ions show very good selectivity of Ag/Raff NPs toward Cr(VI) species. The added–found method is used to confirm the accuracy and precision of developed analytical approach.  相似文献   

17.
A rapid and sensitive technique for frauds determination in vanilla flavors was developed. The method comprises separation by liquid chromatography followed by an electrochemical detection using a homemade screen-printed carbon electrode modified with aluminium-doped zirconia nanoparticles (Al-ZrO2-NPs/SPCE). The prepared nanomaterials (Al-ZrO2-NPs) were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). This method allows for the determination of six phenolic compounds of vanilla flavors, namely, vanillin, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillyl alcohol, vanillic acid and ethyl vanillin in a linear range between 0.5 and 25 µg g−1, with relative standard deviation values from 2.89 to 4.76%. Meanwhile, the limits of detection and quantification were in the range of 0.10 to 0.14 µg g−1 and 0.33 to 0.48 µg g−1, respectively. In addition, the Al-ZrO2-NPs/SPCE method displayed a good reproducibility, high sensitivity, and good selectivity towards the determination of the vanilla phenolic compounds, making it suitable for the determination of vanilla phenolic compounds in vanilla real extracts products.  相似文献   

18.
Though not regulated in directives such as the Water Framework Directive of the European Union, the investigation of geogenic background concentrations of certain elements such as precious metals is of increasing interest, in particular for the early detection of a potential environmental pollution due to the increased use in various industrial and technological applications and in medicine. However, the precise and accurate quantification of precious metals in natural waters is challenging due to the complex matrices and the ultra-low concentrations in the (sub-) ng L−1 range. A methodological approach, based on matrix separation and pre-concentration on the strong anion exchange resin TEVA® Resin in an online mode directly coupled to ICP-SFMS, has been developed for the determination of Ag, Pt, Pd and Au in ground water. Membrane desolvation sample introduction was used to reduce oxide-based spectral interferences, which complicate the quantification of these metals with high accuracy. To overcome errors arising from matrix effects—in particular, the highly varying major ion composition of the investigated ground water samples—an isotope dilution analysis and quantification based on standard additions, respectively, were performed. The method allowed to process four samples per hour in a fully automated mode. With a sample volume of only 8 mL, enrichment factors of 6–9 could be achieved, yielding detection limits <1 ng L−1. Validation of the trueness was performed based on the reference samples. This method has been used for the analysis of the total concentrations of Ag, Pt, Pd and Au in highly mineralized ground waters collected from springs located in important geological fault zones of Austria’s territory. Concentrations ranges of 0.21–64.2 ng L−1 for Ag, 0.65–6.26 ng L−1 for Pd, 0.07–1.55 ng L−1 for Pt and 0.26–1.95 ng L−1 for Au were found.  相似文献   

19.
Immunoanalytical methods at a very low limit of detection (LOD) and a low limit of quantification (LOQ) are becoming more and more important for environmental analysis and especially for monitoring drinking water quality. Biosensors have suitable characteristics such as efficiency in allowing very fast, sensitive, and cost-effective detection. Here we describe a fully automated immunoassay for estrone with a LOD below 0.20 ng L–1 and a LOQ below 1.40 ng L–1. In contrast to common analytical methods such as GC-MS or HPLC-MS, the biosensor used requires no sample pre-treatment and pre-concentration. The basis of our sensitive assay is the antibody with a high affinity constant towards estrone. The very low amount of antibody per sample results in low validation parameters (LOD, LOQ, and IC50), but this assay for estrone represents the current device-related limitation of the River Analyser (RIANA).  相似文献   

20.
Zizyphus lotus L. is a perennial shrub particularly used in Algerian folk medicine, but little is known concerning the lipophilic compounds in the most frequently used parts, namely, root bark, pulp, leaves and seeds, which are associated with health benefits. In this vein, the lipophilic fractions of these morphological parts of Z. lotus from Morocco were studied by gas chromatography–mass spectrometry (GC–MS), and their antiproliferative and antimicrobial activities were evaluated. GC–MS analysis allowed the identification and quantification of 99 lipophilic compounds, including fatty acids, long-chain aliphatic alcohols, pentacyclic triterpenic compounds, sterols, monoglycerides, aromatic compounds and other minor components. Lipophilic extracts of pulp, leaves and seeds were revealed to be mainly composed of fatty acids, representing 54.3–88.6% of the total compounds detected. The leaves and seeds were particularly rich in unsaturated fatty acids, namely, (9Z,12Z)-octadeca-9,12-dienoic acid (2431 mg kg−1 of dry weight) and (9Z)-octadec-9-enoic acid (6255 mg kg−1 of dry weight). In contrast, root bark contained a high content of pentacyclic triterpenic compounds, particularly betulinic acid, accounting for 9838 mg kg−1 of dry weight. Root bark extract showed promising antiproliferative activity against a triple-negative breast cancer cell line, MDA-MB-231, with a half-maximal inhibitory concentration (IC50) = 4.23 ± 0.18 µg mL−1 of extract. Leaf extract displayed interesting antimicrobial activity against Escherichia coli, methicillin-sensitive Staphylococcus aureus and Staphylococcus epidermis, presenting minimum inhibitory concentration (MIC) values from 1024 to 2048 µg mL−1 of extract. Our results demonstrate that Zizyphus lotus L. is a source of promising bioactive components, which can be exploited as natural ingredients in pharmaceutical formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号