首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new method for the smooth and highly efficient preparation of polyalkylated aryl propiolates has been developed. It is based on the formation of the corresponding aryl carbonochloridates (cf. Scheme 1 and Table 1) that react with sodium (or lithium) propiolate in THF at 25 – 65°, with intermediate generation of the mixed anhydrides of the arylcarbonic acids and prop‐2‐ynoic acid, which then decompose almost quantitatively into CO2 and the aryl propiolates (cf. Scheme 11). This procedure is superior to the transformation of propynoic acid into its difficult‐to‐handle acid chloride, which is then reacted with sodium (or lithium) arenolates. A number of the polyalkylated aryl propiolates were subjected to flash vacuum pyrolysis (FVP) at 600 – 650° and 10−2 Torr which led to the formation of the corresponding cyclohepta[b]furan‐2(2H)‐ones in average yields of 25 – 45% (cf. Scheme 14). It has further been found in pilot experiments that the polyalkylated cyclohepta[b]furan‐2(2H)‐ones react with 1‐(pyrrolidin‐1‐yl)cyclohexene in toluene at 120 – 130° to yield the corresponding 1,2,3,4‐tetrahydrobenz[a]azulenes, which become, with the growing number of Me groups at the seven‐membered ring, more and more sensitive to oxidative destruction by air (cf. Scheme 15).  相似文献   

2.
The synthesis of 4,6,8-trimethyl-1-[(E)-4-R-styryl]azulenes 5 (R=H, MeO, Cl) has been performed by Wittig reaction of 4,6,8-trimethylazulene-1-carbaldehyde ( 1 ) and the corresponding 4-(R-benzyl)(triphenyl)phosphonium chlorides 4 in the presence of EtONa/EtOH in boiling toluene (see Table 1). In the same way, guaiazulene-3-carbaldehyde ( 2 ) as well as dihydrolactaroviolin ( 3 ) yielded with 4a the corresponding styrylazulenes 6 and 7 , respectively (see Table 1). It has been found that 1 and 4b yield, in competition to the Wittig reaction, alkylation products, namely 8 and 9 , respectively (cf. Scheme 1). The reaction of 4,6,8-trimethylazulene ( 10 ) with 4b in toluene showed that azulenes can, indeed, be easily alkylated with the phosphonium salt 4b . 4,6,8-Trimethylazulene-2-carbaldehyde ( 12 ) has been synthesized from the corresponding carboxylate 15 by a reduction (LiAlH4) and dehydrogenation (MnO2) sequence (see Scheme 2). The Swern oxidation of the intermediate 2-(hydroxymethyl)azulene 16 yielded only 1,3-dichloroazulene derivatives (cf. Scheme 2). The Wittig reaction of 12 with 4a and 4b in the presence of EtONa/EtOH in toluene yielded the expected 2-styryl derivatives 19a and 19b , respectively (see Scheme 3). Again, the yield of 19b was reduced by a competing alkylation reaction of 19b with 4b which led to the formation of the 1-benzylated product 20 (see Scheme 3). The ‘anil synthesis’ of guaiazulene ( 21 ) and the 4-R-benzanils 22 (R=H, MeO, Cl, Me2N) proceeded smoothyl under standard conditions (powered KOH in DMF) to yield the corresponding 4-[(E)-styryl]azulene derivatives 23 (see Table 4). In minor amounts, bis(azulen-4-yl) compounds of type 24 and 25 were also formed (see Table 4). The ‘anil reaction’ of 21 and 4-NO2C6H4CH=NC6H5 ( 22e ) in DMF yielded no corresponding styrylazulene derivative 23e . Instead, (E)-1,2-bis(7-isopropyl-1-methylazulen-4-yl)ethene ( 27 ) was formed (see Scheme 4). The reaction of 4,6,8-trimethylazulene ( 10 ) and benzanil ( 22a ) in the presence of KOH in DMF yielded the benzanil adducts 28 to 31 (cf. Scheme 5). Their direct base-catalyzed transformation into the corresponding styryl-substituted azulenes could not be realized (cf. Scheme 6). However, the transformation succeeded smoothly with KOH in boiling EtOH after N-methylation (cf. Scheme 6).  相似文献   

3.
It is shown that 4,8‐diphenylazulene ( 1 ) can be easily prepared from azulene by two consecutive phenylation reactions with PhLi, followed by dehydrogenation with chloranil. Similarly, a Me group can subsequently be introduced with MeLi at C(6) of 1 (Scheme 2). This methylation led not only to the expected main product, azulene 2 , but also to small amounts of product 3 , the structure of which has been determined by X‐ray crystal‐structure analysis (cf. Fig. 1). As expected, the latter product reacts with chloranil at 40° in Et2O to give 2 in quantitative yields. Vilsmeier formylation of 1 and 2 led to the formation of the corresponding azulene‐1‐carbaldehydes 4 and 5 . Reduction of 4 and 5 with NaBH4/BF3 ? OEt2 in diglyme/Et2O 1 : 1 and BF3 ? OEt2, gave the 1‐methylazulenes 6 and 7 , respectively. In the same way was azulene 9 available from 6 via Vilsmeier formylation, followed by reduction of azulene‐1‐carbaldehyde 8 (Scheme 3). The thermal reactions of azulenes 1, 6 , and 7 with excess dimethyl acetylenedicarboxylate (ADM) in MeCN at 100° during 72 h afforded the corresponding heptalene‐4,5‐dicarboxylates 11, 12 , and 13 , respectively (Scheme 4). On the other hand, the highly substituted azulene 9 gave hardly any heptalene‐4,5‐dicarboxylate.  相似文献   

4.
A number of azulenes 1 , in particular those with π‐substituents at C(6) such as phenyl, 3,5‐dimethylphenyl, and 4‐biphenyl, have been reacted with 3 mol‐equiv. of dimethyl acetylenedicarboxylate (ADM) in MeCN at 110° (cf. Scheme 1). Main products had been, in all cases, the corresponding heptalene‐4,5‐dicarboxylates 2 . However, a whole number of side products, mainly rearranged (1+2)‐adducts with two molecules of ADM, in amounts of 0.2–9% were also isolated and characterized (cf. Scheme 2). The 2a,8a‐dihydro‐3,4‐ethenoazulene‐1,2‐dicarboxylates 14 , formed by energetically favorable ring closure from the solvent‐stabilized zwitterions 15 , resulting from bond heterolysis in the primary cycloadducts 12 (cf. Scheme 3), have been mechanistically identified as the pivotal intermediates responsible for the formation of all side product (cf. Schemes 5, 9, 12, and 13). Deuterium‐labeling experiments were in agreement with the proposed mechanisms, indicating that sigmatropic [1,5s]‐H shifts in 14 (cf. Scheme 6) as well as isoconjugate [1,4s]‐H shifts in resonance‐stabilized zwitterions of type 21 (cf. Scheme 9) are the crucial steps for side‐product formation. It is postulated that a concluding antarafacial 8e‐dyotropic rearrangement is responsible for the appearance of the 2,4a‐dihydrophenanthrene‐tetracarboxylates of type trans‐ 6 (cf. Scheme 9) in the reaction mixtures, which further rearrange thermally by a not fully understood mechanism into the isomeric tetracarboxylates 7 (cf. Schemes 10 and 11). Most surprising is the presence of a small amount (0.3–1%) of the azulene‐4,5,7,8‐tetracarboxylate 9 in the reaction mixture of azulene 1a and ADM. It is proposed that the formation of 9 is the result of a [1,5s]‐C shift in the spiro‐linked intermediates 24 , which, after prototropic shift and take‐up of a third molecule of ADM, disintegrate by a retro‐Diels‐Alder reaction into 9 and the phthalic diesters 30 (cf. Scheme 12). The UV/VIS spectra of the π‐substituted heptalene‐4,5‐dicarboxylates 2d – 2f and their double‐bond shifted (DBS) forms 2d – 2f (cf. Table 4 and Figs. 912) exhibit in comparison with the heptalene‐dicarboxylates 2a and 2′a , carrying a t‐Bu group at C(8), only marginal differences, which are mainly found in the relative intensity and position of heptalene bands II and III .  相似文献   

5.
The thermal reaction of 1-[(E)-styrl]azulenes with dimethyl acetylenedicarboxylate (ADM) in decalin at 190–200° does not lead to the formation fo the corresponding heptalene-1,2-dicarboxylates (Scheme 2). Main products are the corresponding azulene-1,2-dicarboxylates (see 4 and 9 ), accompanied by the benzanellated azulenes trans- 10a and trans- 11 , respectively. The latter compounds are formed by a Diels-Alder reaction of the starting azulenes and ADM, followed by an ene reaction with ADM (cf. Scheme 3). The [RuH2(PPh3)4]-catalyzed reaction of 4,6,8-trimethyl-1-[(E)-4-R-styryl]azulenes (R=H, MeO, Cl; Scheme 4) with ADM in MeCN at 110° yields again the azulene-1,2-dicarboxylates as main products. However, in this case, the corresponding heptalene-1,2-dicarboxylates are also formed in small amounts (3–5%; Scheme 4). The benzanellated azulenes trans- 10a and trans- 10b are also found in small amounts (2–3%) in the reaction mixture. ADM Addition products at C(3) of the azulene ring as well as at C(2) of the styryl moiety are also observed in minor amounts (1–3%). Similar results are obtained in the [RuH2(PPh3)4]-catalyzed reaction of 3-[(E)-styryl]guaiazulene ((E)- 8 ; Scheme 5) with ADM in MeCN. However, in this case, no heptalene formation is observed, and the amount of the ADM-addition products at C(2) of the styryl group is remarkably increased (29%). That the substitutent pattern at the seven-membered ring of (E)- 8 is not responsible for the failure of heptalene formation is demonstrated by the Ru-catalyzed reaction of 7-isopropyl-4-methyl-1-[(E)-styryl]azulene ((E)- 23 ; Scheme 11) with ADM in MeCN, yielding the corresponding heptalene-1,2-dicarboxylate (E)- 26 (10%). Again, the main product is the corresponding azulene-1,2-dicarboxylate 25 (20%). Reaction of 4,6,8-trimethyl-2-[(E)-styryl]azulene ((E)- 27 ; Scheme 12) and ADM yields the heptalene-dicarboxylates (E)- 30A / B , purely thermally in decalin (28%) as well as Ru-catalyzed in MeCN (40%). Whereas only small amounts of the azulene-1,2-dicarboxylate 8 (1 and 5%, respectively) are formed, the corresponding benzanellated azulene trans- 29 ist found to be the second main product (21 and 10%, respectively) under both reaction conditions. The thermal reaction yields also the benzanellated azulene 28 which is not found in the catalyzed variant of the reaction. Heptalene-1,2-dicarboxylates are also formed from 4-[(E)-styryl]azulenes (e.g. (E)- 33 and (E)- 34 ; Scheme 14) and ADM at 180–190° in decalin and at 110° in MeCN by [RuH2(PPh3)4] catalysis. The yields (30%) are much better in the catalyzed reaction. The formation of by-products (e.g. 39–41 ; Scheme 14) in small amounts (0.5–5%) in the Ru-catalyzed reactions allows to understand better the reactivity of zwitterions (e.g. 42 ) and their triyclic follow-up products (e.g. 43 ) built from azulenes and ADM (cf. Scheme 15).  相似文献   

6.
It is shown that azulenes react with dimethyl acetylenedicarboxylate (ADM) in solvents such as toluene, dioxan, or MeCN in the presence of 2 mol-% [RuH2(PPh3)4] already at temperatures as low as 100° and lead to the formation of the corresponding heptalene-1,2-dicarboxylates in excellent yields (Tables 1 and 2). The Ru-catalyzed reaction of ADM with 1-(tert-butyl)-4,6,8-trimethylazulene ( 31 ) takes place even at room temperature, yielding the primary tricyclic addition product 32 and its thermal retro-Diels-Alder product dimethyl 4,6,8-trimethylazulene-1,2-dicarboxylate ( 21 ; Scheme 4). At 100° in MeCN, 32 yields 90% of 21 and only 10% of the corresponding heptalene. These observations demonstrate that [RuH2(PPh3)4] catalyzes the first step of the thermal formation of heptalenes from azulenes and ADM which occurs in apolar solvents such as tetralin or decalin at temperatures > 180° (cf. Scheme 1).  相似文献   

7.
A number of aryl 3‐arylprop‐2‐ynoates 3 has been prepared (cf. Table 1 and Schemes 3 – 5). In contrast to aryl prop‐2‐ynoates and but‐2‐ynoates, 3‐arylprop‐2‐ynoates 3 (with the exception of 3b ) do not undergo, by flash vacuum pyrolysis (FVP), rearrangement to corresponding cyclohepta[b]furan‐2(2H)‐ones 2 (cf. Schemes 1 and 2). On melting, however, or in solution at temperatures >150°, the compounds 3 are converted stereospecifically to the dimers 3‐[(Z)‐diarylmethylidene]‐2,3‐dihydrofuran‐2‐ones (Z)‐ 11 and the cyclic anhydrides 12 of 1,4‐diarylnaphthalene‐2,3‐dicarboxylic acids, which also represent dimers of 3 , formed by loss of one molecule of the corresponding phenol from the aryloxy part (cf. Scheme 6). Small amounts of diaryl naphthalene‐2,3‐dicarboxylates 13 accompanied the product types (Z)‐ 11 and 12 , when the thermal transformation of 3 was performed in the molten state or at high concentration of 3 in solution (cf. Tables 2 and 4). The structure of the dihydrofuranone (Z)‐ 11c was established by an X‐ray crystal‐structure analysis (Fig. 1). The structures of the dihydrofuranones 11 and the cyclic anhydrides 12 indicate that the 3‐arylprop‐2‐ynoates 3 , on heating, must undergo an aryl O→C(3) migration leading to a reactive intermediate, which attacks a second molecule of 3 , finally under formation of (Z)‐ 11 or 12 . Formation of the diaryl dicarboxylates 13 , on the other hand, are the result of the well‐known thermal Diels‐Alder‐type dimerization of 3 without rearrangement (cf. Scheme 7). At low concentration of 3 in decalin, the decrease of 3 follows up to ca. 20% conversion first‐order kinetics (cf. Table 5), which is in agreement with a monomolecular rearrangement of 3 . Moreover, heating the highly reactive 2,4,6‐trimethylphenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3f ) in the presence of a twofold molar amount of the much less reactive phenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3g ) led, beside (Z)‐ 11f , to the cross products (Z)‐ 11fg , and, due to subsequent thermal isomerization, (E)‐ 11fg (cf. Scheme 10), the structures of which indicated that they were composed, as expected, of rearranged 3f and structurally unaltered 3g . Finally, thermal transposition of [17O]‐ 3i with the 17O‐label at the aryloxy group gave (Z)‐ and (E)‐[17O2]‐ 11i with the 17O‐label of rearranged [17O]‐ 3i specifically at the oxo group of the two isomeric dihydrofuranones (cf. Scheme 8), indicating a highly ordered cyclic transition state of the aryl O→C(3) migration (cf. Scheme 9).  相似文献   

8.
It is shown that the 2-(hydroxymethyl)-1-methylazulenes 6 are being oxidized by activated MnO2 in CH2Cl2 at room temperature to the corresponding azulene-1,2-dicarbaldehydes 7 (Scheme 2). Extension of the MnO2 oxidation reaction to 1-methyl- and/or 3-methyl-substituted azulenes led to the formation of the corresponding azulene-1-carbaldehydes in excellent yields (Scheme 3). The reaction of unsymmetrically substituted 1,3-dimethyl-azulenes (cf. 15 in Scheme 4) with MnO2 shows only little chemoselectivity. However, the observed ratio of the formed constitutionally isometric azulene-1-carbaldehydes is in agreement with the size of the orbital coefficients in the HOMO of the azulenes. The reaction of guaiazulene ( 18 ) with MnO2 in dioxane/H2O at room temperature gave mainly the expected carbaldehyde 19 . However, it was accompanied by the azulene-diones 20 and 21 (Scheme 5). The precursor of the demethylated compound 20 is the carbaldehyde 19 . Similarly, the MnO2 reaction of 7-isopropyl-4-methyalazulene ( 22 ) as well as of 4,6,8-trimethylazulene ( 24 ) led to the formation of a mixture of the corresponding azulene-1,5-diones and azulene-1,7-diones 20 / 23 and 25 / 26 , respectively, in decent yields (Schemes 6 and 7). No MnO2 reaction was observed with 5,7-dimethylazulene.  相似文献   

9.
The [3,3′(4H,4′H)‐bi‐2H‐1,3‐oxazine]‐4,4′‐diones 3a – 3i were obtained by [2+4] cycloaddition reactions of furan‐2,3‐diones 1a – 1c with aromatic aldazines 2a – 2d (Scheme 1). So, new derivatives of bi‐2H‐1,3‐oxazines and their hydrolysis products, 3,5‐diaryl‐1H‐pyrazoles 4a – 4c (Scheme 3), which are potential biologically active compounds, were synthesized for the first time.  相似文献   

10.
Several derivatives belonging to a new compound class, namely azulene‐1‐azo‐2′‐thiazoles, were prepared by the diazotization of 2‐aminothiazoles in the presence of HNO3/H3PO4 followed by the coupling of diazonium salts with azulenes in buffered medium. The reactions proved to be general for this class, the yields are, however, considerably influenced by the substituents at thiazole moiety. For the first time a N‐oxide provided from an amino substituted five‐member nitrogenous heterocycle was diazotized and coupled. The structure of the obtained compounds was assigned and their physico‐chemical properties were discussed. The new azulene azo derivatives exhibit a strong bathochromic shift in UV‐Vis due to the intense push‐pull effect of aromatic system and to the intrinsic properties of thiazole moiety.  相似文献   

11.
A one‐step synthesis of ethyl 2,3‐dihydronaphtho[1,2‐b]furan‐2‐carboxylate and/or ethyl 4′‐oxospiro[cyclopropane‐1,1′(4′H)‐naphthalene]‐2′‐carboxylate derivatives 2 and 3 , respectively, from substituted naphthalen‐1‐ols and ethyl 2,3‐dibromopropanoate is described (Scheme 1). Compounds 2 were easily aromatized (Scheme 2). In the same way, 3,4‐dibromobutan‐2‐one afforded the corresponding 1‐(2,3‐dihydronaphtho[1,2‐b]furan‐2‐yl)ethanone and/or spiro derivatives 8 and 9 , respectively (Scheme 6). A mechanism for the formation of the dihydronaphtho[1,2‐b]furan ring and of the spiro compounds 3 is proposed (Schemes 3 and 4). The structures of spiro compounds 3a and 3f were established by X‐ray structural analysis. The reactivity of compound 3a was also briefly examined (Scheme 9).  相似文献   

12.
The oxidation of 1‐(3,8‐dimethylazulen‐1‐yl)alkan‐1‐ones 1 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (=4,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,2‐dicarbonitrile; DDQ) in acetone/H2O mixtures at room temperature does not only lead to the corresponding azulene‐1‐carboxaldehydes 2 but also, in small amounts, to three further products (Tables 1 and 2). The structures of the additional products 3 – 5 were solved spectroscopically, and that of 3a also by an X‐ray crystal‐structure analysis (Fig. 1). It is demonstrated that the bis(azulenylmethyl)‐substituted DDQ derivatives 5 yield on methanolysis or hydrolysis precursors, which in a cascade of reactions rearrange under loss of HCl into the pentacyclic compounds 3 (Schemes 4 and 7). The found 1,1′‐[carbonylbis(8‐methylazulene‐3,1‐diyl)]bis[ethanones] 4 are the result of further oxidation of the azulene‐1‐carboxaldehydes 2 to the corresponding azulene‐1‐carboxylic acids (Schemes 9 and 10).  相似文献   

13.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 2. An Unexpected Rearrangement by the Acid‐Catalyzed Cyclialkylation of 2,4‐Dimethyl‐2‐phenylpentan‐3‐ol under Formation of trans ‐2,3‐Dihydro‐1,1,2,3‐tetramethyl‐1 H ‐indene The acid catalyzed‐cyclialkylation of 4‐(2‐chloro‐phenyl)‐2,4‐dimethylpentan‐2‐ol ( 1 ) gave two products: 4‐chloro‐2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene ( 2 ) and also trans‐4‐chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐indene ( 3 ). A mechanism was proposed in Part 1 (cf. Scheme 1) for this unexpected rearrangement. This mechanism would mainly be supported by the result of the cyclialkylation of 2,4‐dimethyl‐2‐phenylpentan‐3‐ol ( 4 ), which, with respect to the similarity of ion II in Scheme 1 and ion V in Scheme 2, should give only product 5 . This was indeed the experimental result of this cyclialkylation. But the result of the cyclialkylation of 1,1,1,2′,2′,2′‐hexadeuterated isomer [2H6]‐ 4 of 4 (cf. Scheme 3) requires a different mechanism as for the cyclialkylation of 1 . Such a mechanism is proposed in Schemes 5 and 6. It gives a satisfactory explanation of the experimental results and is supported by the result of the cyclialkylation of 2,4‐dimethyl‐3‐phenylpentan‐3‐ol ( 9 ; Scheme 7). The alternative migration of a Ph or of an i‐Pr group (cf. Scheme 6) is under further investigation.  相似文献   

14.
1‐(Bromoacetyl)‐3‐methylazulene (1a) and methyl 3‐(bromoacetyl)azulene‐1‐carboxylate (1b) reacted with thioamides 3a,b and thioureas 3c,d in boiling ethanol to give the corresponding (4‐thiazolyl)azulenes 4a‐d and 5a‐d in good yields, respectively. The reactions of dibromoacetyl‐substituted azulene (2) also gave (4‐thiazolyl) azulenes 5a‐d in lower yields and the azulene 2 was recovered. By heating compounds 5a‐d in 100% phosphoric acid, the ester group was eliminated to yield 1‐(4‐thiazolyl)azulenes 6a‐d. Compounds 1a,b reacted with thiosemicarbazones 7a‐f to afford [(2‐alkylidenehydrazino)thiazol‐4‐yl]azulenes 8a‐f and 9a‐f in moderate to high yields via their hydromides.  相似文献   

15.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

16.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 5. The Acid‐Catalyzed Cyclialkylation of 2‐(2‐Chlorophenyl)‐2,4‐dimethylpentan‐3‐ol The mechanism proposed in [1] to explain the surprising result of the cyclialkylation of 4‐(2‐chlorophenyl)‐2,4‐dimethylpentan‐2‐ol ( 3 , R=Me), which gives not only the ‘normal' product, i.e., the 4‐chloro‐2,3‐dihydro‐1,1,3,3‐tetramethyl‐ ( 4 ), but also the isomer trans‐4‐chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐inden ( 5 ), could be differentiated in two sections (cf. Scheme 2): the first from 3 to the intermediary ion IIa ⇌ IIb , and the second from the latter ions to the final product 5 . For the first section, a sufficiently satisfactory explanation has been given in [1]; the second section has received important support from the mechanisms of the cyclialkylation of 2,4‐dimethyl‐2‐phenylpentan‐3‐ol ( 6 ), the precursor of II′a , the ion IIa without the o‐Cl substituent (cf. Schemes 2, 3 and 5 and [4]). The present communication gives an explanation of the influence of the o‐Cl substituent: a mechanism is proposed for the very complex cyclialkylation of 2‐(2‐chlorophenyl)‐2,4‐dimethylpentan‐3‐ol ( 11 ; cf. Scheme 9). Both mechanism may be considered as definitive. It is very surprising that, by the cyclialkylation of the compounds 1, 3, 8, 11, 15 , and 17 , only compound 1 gives the ‘normal' product; the cyclialkylation of all other phenylpentanols follows complex pathways including Et, i‐Pr, and Ph migrations, which could not be expected. In addition, it has been established that the transformation of 21 to 22 (cf. Scheme 12) and that of 23 to 24 (cf. Scheme 13) occur through two consecutive 1,2‐ and not through a single 1,3‐hydride migration or through an elimination‐addition process (cf. Scheme 13). It can be assumed that the transformation of ion IV (the 2‐(2‐chlorophenyl)‐3,4‐dimethylpent‐2‐ylium ion) to the ion V (the 4‐(2‐chlorophenyl)‐3,4‐dimethylpent‐2‐ylium ion (both shown in Scheme 9 as D‐isomers) occurs through the same pathway.  相似文献   

17.
1,3,4,6,8-Pentamethylazulene ( 9 ), when heated at 100° in supercritical CO2 at 150 bar in the presence of 4 equiv. of dimethyl acetylenedicarboxylate (ADM), led to the formation of 16% of a 1:1 mixture of dimethyl 3,5,6,8,10-pentamethylheptalene-1,2-dicarboxylate 12a ) and its double-bond-shifted isomer 12b as well as 4% of the corresponding azulene-1,2-dicarboxylate 13 (Scheme 4). The formation of the [1 + 2] adduct 11 (cf. Scheme 2) was not observed. Similarly, benz[a]azulene ( 25 ) yielded in supercritical CO2 (150°/170 bar) in the presence of 4 equiv. of ADM dimethyl benzo[d]heptalene-6,7-dicarboxylate ( 29 ; 30%) and dimethyl benzo[a]cyclopent[cd]azulene-1,2-dicarboxylate ( 28 ; 22%; Scheme 5). The reaction of 5,9-diphenylbenz[a]azulene ( 26 ) and ADM in supercritical CO2 (100°/150 bar) gave the corresponding benzo[d]heptalene-6,7-dicarboxylate 31 (22%) and dimethyl 5,9-diphenyl-4b,10-etheno-10H-benz[a]azulene-11,12-dicarboxylate( 30 ; 25%; Scheme 5).  相似文献   

18.
The reaction of guaiazulene ( 4 ) and dimethyl acetylenedicarboxylate (ADM) in tetralin or toluene, catalyzed by 5 mol-% of trifluoroacetic acid (TFA) at ambient temperature, leads to the formation of the corresponding heptalene-4,5-dicarboxylate 6 and a guaiazulenyl-substituted 2,2a,4a,8b-tetrahydrocyclopent[cd]azulene derivative 7 beside the expected guaiazulenyl-substituted ethenedicarboxylates (E)- 5 and (Z)- 5 as main products (Scheme 2). The structure of 7 was unequivocally established by an X-ray crystal-structure analysis (Fig. 1). Precursor of 7 must be the 2a,4a-dihydrocyclopent[cd]azulene-3,4-dicarboxylate 9 which reacts, under TFA catalysis, with a second molecule of 4 (Scheme 3). No formation of products of type 7 has been observed in the TFA-catalyzed reaction of 4,6,8-trimethyl- and 1,4,6,8-tetramethylazulene ( 13 and 16 , respectively) and ADM (Scheme 4). On the other hand, the TFA-catalyzed reaction of azulene ( 18 ) itself and ADM at ambient temperature gives rise to a whole variety of new products (Scheme 5), the major part of which is derived from dimethyl 2a,4a-dihydrocyclopent[cd]azulene-3,4-dicarboxylate ( 25 ) as the main intermediate (Scheme 6). Nevertheless, for the formation of the 2a,4a,6,8b-tetrahydrocyclobut[a]azulene derivatives (E)- 24a and (E)- 24b , a corresponding 2a,8b-dihydro precursor 29 has to be postulated as crucial intermediate (Scheme 8).  相似文献   

19.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

20.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号