首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In these studies, we investigated the antioxidant activity of three ruthenium cyclopentadienyl complexes bearing different imidato ligands: (η5-cyclopentadienyl)Ru(CO)2-N-methoxysuccinimidato (1), (η5-cyclopentadienyl)Ru(CO)2-N-ethoxysuccinimidato (2), and (η5-cyclopentadienyl)Ru(CO)2-N-phthalimidato (3). We studied the effects of ruthenium complexes 1–3 at a low concentration of 50 µM on the viability and the cell cycle of peripheral blood mononuclear cells (PBMCs) and HL-60 leukemic cells exposed to oxidative stress induced by hydrogen peroxide (H2O2). Moreover, we examined the influence of these complexes on DNA oxidative damage, the level of reactive oxygen species (ROS), and superoxide dismutase (SOD) activity. We have observed that ruthenium complexes 1–3 increase the viability of both normal and cancer cells decreased by H2O2 and also alter the HL-60 cell cycle arrested by H2O2 in the sub-G1 phase. In addition, we have shown that ruthenium complexes reduce the levels of ROS and oxidative DNA damage in both cell types. They also restore SOD activity reduced by H2O2. Our results indicate that ruthenium complexes 1–3 bearing succinimidato and phthalimidato ligands have antioxidant activity without cytotoxic effect at low concentrations. For this reason, the ruthenium complexes studied by us should be considered interesting molecules with clinical potential that require further detailed research.  相似文献   

2.
Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redox-active metal ion in their active site (Mn, Cu, Fe, Ni) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE). Rationally designed proteins with well-defined three-dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copper-binding scaffolds: H3 (His3), H4 (His4), H2DH (His3Asp with two His and one Asp in the same plane) and H3D (His3Asp with three His in the same plane) by using the scaffold of the de novo protein GRα3D. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good CuII-bound structural mimics of Cu-only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.  相似文献   

3.
Nowadays, the discovery of a new non-toxic metal complex with biological activity represents a very active area of research. Two Cu+2 complexes, [Cu(L1)2(H2O)3] (C1) (HL1= N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-naphtalenesulfonamide) and [Cu(L2)2(py)2(H2O)] (C2) (HL2= N-(5-ethyl-[1,3,4]–thiadiazole–2-yl)-naphtalenesulfonamide), with two new ligands were synthesized. The X-ray crystal structures of the complexes were determined. In both complexes, Cu+2 is five-coordinated, forming a CuN2O3 and CuN4O chromophore, respectively. The ligands act as monodentate, coordinating the metal ion through a single Nthiadiazole atom; for the C2 complex, the molecules from the reaction medium (pyridine and water) are also involved in the coordination of Cu+2. The complexes have a distorted square pyramidal square-planar geometry. The compounds were characterized by FT-IR, electronic EPR spectroscopy, and magnetic methods. The nuclease activity studies confirm the complexes’ capacity to cleave the DNA molecule. Using a xanthine-xanthine oxydase system, the SOD mimetic activity of the complexes was demonstrated. Cytotoxicity studies were carried out on two tumor cell lines (HeLa, WM35) and on a normal cell line (HFL1) using the MTT method, with cisplatin used as a positive control. The antibacterial activity of the complexes was investigated against two Gram-positive and two Gram-negative bacteria, and compared with Amoxicillin and Norfloxacin using the disk diffusion method. Both complexes showed in vitro biological activity but the C2 complex was more active. A lack of in vivo toxicity was demonstrated for the C2 complex by performing hepatic, renal, and hematological studies on Swiss mice.  相似文献   

4.
The dinuclear complex [Cu2(HL)2(H2O)2](ClO4)2 ( 1 ) [H2L = 5′‐(pyridin‐2‐yl)‐1‐H,2′‐H‐3, 3′‐bis(1, 2,4‐triazole)] was obtained and fully characterized. It exhibits a centrosymmetry configuration, in which each copper(II) ion is pentacoordinate with four nitrogen atoms of two triazole ligands and one oxygen atom from a water molecule. The net atomic charges distribution and atomic orbital contribution to frontier molecular orbitals were obtained using the Gaussian 98 program with Hartree‐Fock method at LANL2DZ level, indicating that the copper(II) ion has the potential to accept the electron of O2 · –. The complex showed quasi‐reversible one‐electron CuII/CuI redox waves with redox potentials of –0.034 V. The SOD‐like activity (IC50) of 1 was measured to be 0.18 ± 0.01 μM by xanthine/xanthine oxidase‐NBT assay at pH 7.8. The relatively high SOD activity suggests that the positive charge of protonated triazole can effectively steer O2 · – to and from the active copper ion.  相似文献   

5.
Investigation of salicylatocopper complexes in the presence of a nitrogen donor ligand is a growing research area due to the interesting mimetic activities of such complexes. Here, three X-salicylatocopper (where X = 3-methyl, or 4-methoxy) complexes with three different N-donor ligands, [Cu(μ-menia)(3-Mesal)2(menia)(H2O)]2 (I), Cu(3-Mesal)2(denia)2(H2O)2 (II), Cu(4-MeOsal)2(2-pyme)2 (III), are presented (where 3-Mesal = 3-methysalicylate, 4-MeOsal = 4-methoxysalicylate, menia = N-methylnicotinamide, 2-pyme = 2-pyridylmethanol). The complexes were characterized by elemental analysis, IR and UV-VIS spectrophotometry. Cyclic voltammetry and the superoxide dismutase activity of the prepared complexes in solution were measured and the complexes were characterized by means of the inhibition concentration IC50. In addition, the superoxide dismutase (SOD) activity of these complexes was compared with those of the parent ligand copper acetate, native SOD enzyme, and the related copper complexes containing non-steroidal anti-inflammatory drugs. The resulting SOD activity was correlated to the composition, structure and redox stability of the prepared complexes. The best value of the inhibition concentration was found for complex I (IC50 = 2.24 µM), which classifies this complex into a group of good superoxide scavengers.  相似文献   

6.
Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet–visible (UV–Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8 with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co–cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.  相似文献   

7.
Two new copper(II) complexes, [Cu2(bipy)2(H2O)3(tp)(NO3)](NO3) · H2O (1) and [Cu2(bipy)2(tp)2(H2O)] n (2), (tp = terephthalato, bipy = 2,2-bipyridine), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction methods. Complex (1) contains a non-coordinated nitrate anion and an asymmetric binuclear cation in which each copper ion has a distorted square pyramidal coordination geometry with the axial Cu—O distance elongated. The crystal structure of (2) features a zigzag 1D polymeric chain along the diagonal axis of the (0 0 1) plane. Tp adopts two types of coordination mode. In the first mode, both carboxylate groups are unidentate, as in complex (1). In addition to the first mode, the tp ligand in complex (2) also adopts the second coordination mode, in which one carboxylate group is unidentate and the other is bidentately chelating with a copper(II) ion. The magnetic properties of complex (2) have also been studied.  相似文献   

8.
Summary Mixed ligand diglycinatocopper(II) complexes of the Cu(glygly)L·nH2O type, where glygly stands for [NH2-CH2 CONCH2CO2]2– and L for imidazole (n = 1.5), N-methylimidazole (n = 1), 2-methylimidazole (n = 2), 4-methylimidazole (n = 2), 4-phenylimidazole (n = 2), N-acetylhistamine (n = 2) and NH3 (n = 2), were prepared and characterized by elemental analyses, i.r., vis. and e.p.r. spectroscopic measurements. The molecular structure of [Cu(glygly)(achmH)]·2H2O (achmH = acetylhistamine) was determined using three dimensional XRD data. The structure consists of distorted square planar [Cu(glygly)-(achmH)] units interconnected via the peptide oxygen at the apex to complete a square pyramidal structure, Cu—O-(peptide) 2.477(2) Å. The H2O molecules, not binding directly to the copper ion, involve in intermolecular hydrogen bonding with the copper units. The dianionic glygly ligand and the imidazole ring bind strongly to the central copper ion with Cu—N(amino) 2.045(6) Å, Cu—N-(peptide) 1.891(5) Å, Cu—O(carboxylate) 2.001(4) Å and Cu—N(imidazole) 1.956(5) Å. The dihedral angle between the imidazole nucleus and the CuN3O xy plane is 6.0°. Similar structures with a CuN3O coordination plane are proposed for the imidazole complexes, based on spectroscopic data. The bonding properties of the glygly ligand and the unidentate imidazole ligands are elucidated and discussed with reference to the electronic structures of the complexes deduced from Gaussian analyses.  相似文献   

9.
Xiong  Ya  He  Chun  An  Tai-Cheng  Cha  Chang-Hong  Zhu  Xi-Hai  Jiang  Shaoji 《Transition Metal Chemistry》2003,28(1):69-73
In the neutral title complex [Cu(C4N2H3)2(H2O)3] or [Cu(BBR)2(H2O)3] (BBR = Barbiturate), the CuII ion, in the slightly distorted square-pyramidal geometry, is coordinated by two O atoms of the two monodentate barbiturates and three O atoms of three water ligands. The average bond length of Cu—O (BBR) is 1.981(5) Å and the average bond length of Cu—O (H2O) at the basal sites is 1.94(5) Å, i.e. much shorter than that of Cu—O (H2O) [2.175(11) Å]. The crystal structure is characterized by an extensive network of hydrogen bonds in which each [Cu(BBR)2(H2O)3] entity links to six adjacent [Cu(BBR)2(H2O)3] by O(C=O) ··· H—O(H2O) bonds. Tautomerism in the coordination process for BBR was found from the crystal structure and i.r. spectral analysis. The interaction of CuII and BBR in aqueous solution was also investigated by electronic spectra and electrochemical method. It was observed that the copper ion could not only form the [Cu(BBR)2(H2O)3] complex in aqueous but also catalyze the decomposition of BBR at pH 1.1.  相似文献   

10.
Two copper(II) complexes, [Cu2(μ-benzoato)(L1)2]NO3·2H2O (1) and [Cu2(μ-succinato)(L2)2(H2O)]ClO4 (2), have been synthesized, where L1 = N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzoylhydrazone and L2 = N′-[(E)-pyridin-2-ylmethylidene]benzoylhydrazone. These complexes were characterized including by single-crystal X-ray diffraction studies. The copper is five-coordinate in 1 while in 2 one copper is five-coordinate and the other is six-coordinate. Electrochemical behavior of these complexes was measured by cyclic voltammetry. The conproportionation equilibrium constants (Kcon) for both complexes have been estimated. The superoxide dismutase (SOD) activities of 1 and 2 were measured by nitro blue tetrazolium assay. Complex 1 has better SOD activity than 2.  相似文献   

11.
Novel mononuclear cymantrenecarboxylate complexes of transition metals, [Co(H2O)6](CymCO2)2·4H2O (Cym = (η5-C5H4)Mn(CO)3) (1), [Ni(H2O)6](CymCO2)2·4H2O (2), [Zn(H2O)6](CymCO2)2·4H2O (3), [Co(CymCO2)2(imz)2] (imz = imidazole, 4), [Co(CymCO2)2(bpy)2]·2PhMe (bpy = 2,2′-bipyridyl, 5), [Ni(CymCO2)(bpy)2(H2O)][CymCO2]·0.5MePh·2H2O (6), [Cu(CymCO2)2(imz)2] (7), and [Cu(CymCO2)2(bpy)(H2O)] (8), were obtained and characterized by single-crystal X-ray analysis. Complexes 1–3 are isostructural. Magnetism of the Co complexes 1, 4, and 5 was studied; it was shown that they exhibit the properties of field-induced single-molecule magnets with magnetization reversal barriers (ΔE/kB) of 44, 13, and 10 K, respectively. Thermal decomposition of complexes 1–8 was studied by means of DSC and TGA methods. The final products of thermolysis of 1–6 in air, according to powder XRD data, are the pure spinel phases MMn2O4; for the cases of copper complexes, the mixtures of CuMn2O4 and CuO were found in the products.  相似文献   

12.
A set of new diperoxovanadate(V) complexes with the dipeptides glycyl–glycine or glycyl–leucine as ancillary ligands of the type, A[VO(O2)2(peptide)(H2O)] · H2O, A = Na or K have been synthesized and characterized by elemental analysis, thermal analysis, magnetic susceptibility and spectral studies. The complexes contain side-on bound peroxo groups and a dipeptide zwitterion as co-ligand, binding the metal center unidentately through O (carboxylate) atom. The compounds are highly stable toward decomposition in solutions of acidic as well as physiological pH and serve as weak substrates to catalase, undergoing degradation in the presence of the enzyme at a rate much slower than H2O2. The compounds stoichiometrically oxidize GSH to GSSG. On comparing the GSH oxidizing ability of these compounds with those of previously reported peroxotungsten compounds containing similar co-ligands, a significant difference was noted. The compounds induce a strong inhibitory effect on alkaline phosphatase activity with a potency higher than that of the free peptides, vanadate, or peroxovanadate.  相似文献   

13.
The complex salt [Cu4(SCN2H4)7(NO3)](NO3)(SO4) · 3.3H2O was synthesized via reaction of aqueous solutions of thiourea with copper nitrate at 80°C and studied using X-ray diffraction analysis. The conditions and reasons for the partial oxidation of thiourea to sulfate ions were established. The crystals are monoclinic: a = 12.6072(7) Å, b = 15.4265(8) Å, c = 22.108(1) Å, = 120.133(6)°, space group P21/c, Z = 4. The crystal structure consists of [Cu4(SCN2H4)7(NO3)]3+ complex cations, SO4 2–, and NO3 anions, and molecules of the water of crystallization. Three types of coordination of the Cu atom were distinguished in the structure: trigonal (Cu–S 2.213–2.279 Å), tetrahedral (Cu–S 2.315–2.459 Å), and trigonal–pyramidal (3+1) (Cu–S 2.26–2.288, Cu–O 2.68 Å). The NO3 ligand was found to be orientationally disordered.  相似文献   

14.
The synthesis, characterization and biological profile (antioxidant capacity, interaction with calf-thymus DNA and serum albumins) of five neutral copper(II) complexes of 5–fluoro–salicylaldehyde in the absence or presence of the N,N’–donor co–ligands 2,2′–bipyridylamine, 2,9–dimethyl–1,10–phenanthroline, 1,10–phenanthroline and 2,2′–bipyridine are presented herein. The compounds were characterized by physicochemical and spectroscopic techniques. The crystal structures of four complexes were determined by single-crystal X-ray crystallography. The ability of the complexes to scavenge 1,1–diphenyl–picrylhydrazyl and 2,2′–azinobis(3–ethylbenzothiazoline–6–sulfonic acid) radicals and to reduce H2O2 was investigated in order to evaluate their antioxidant activity. The interaction of the compounds with calf-thymus DNA possibly takes place via intercalation as suggested by UV–vis spectroscopy and DNA–viscosity titration studies and via competitive studies with ethidium bromide. The affinity of the complexes with bovine and human serum albumins was examined by fluorescence emission spectroscopy revealing the tight and reversible binding of the complexes with the albumins.  相似文献   

15.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

16.
Most ligand designs for reactions catalyzed by (NHC)Cu–H (NHC = N-heterocyclic carbene ligand) have focused on introducing steric bulk near the Cu center. Here, we evaluate the effect of remote ligand modification in a series of [(NHC)CuH]2 in which the para substituent (R) on the N-aryl groups of the NHC is Me, Et, tBu, OMe or Cl. Although the R group is distant (6 bonds away) from the reactive Cu center, the complexes have different spectroscopic signatures. Kinetics studies of the insertion of ketone, aldimine, alkyne, and unactivated α-olefin substrates reveal that Cu–H complexes with bulky or electron-rich R groups undergo faster substrate insertion. The predominant cause of this phenomenon is destabilization of the [(NHC)CuH]2 dimer relative to the (NHC)Cu–H monomer, resulting in faster formation of Cu–H monomer. These findings indicate that remote functionalization of NHCs is a compelling strategy for accelerating the rate of substrate insertion with Cu–H species.

Remote modification of an N-heterocyclic carbene ligand with bulky or electron-rich groups in [(NHC)Cu(μ-H)]2 increases the rate of substrate insertion, which kinetics studies suggest arises from changes in the Cu–H monomer–dimer equilibrium.  相似文献   

17.
New Pb(II), Mn(II), Hg(II), and Zn(II) complexes, derived from 4-(4-chlorophenyl)-1-(2-(phenylamino)acetyl)thiosemicarbazone, were synthesized. The compounds with general formulas, [Pb(H2L)2(OAc)2]ETOH.H2O, [Mn(H2L)(HL)]Cl, [Hg2(H2L)(OH)SO4], and [Zn(H2L)(HL)]Cl, were characterized by physicochemical and theoretical studies. X-ray diffraction studies showed a decrease in the crystalline size of compounds that were exposed to gamma irradiation (γ-irradiation). Thermal studies of the synthesized complexes showed thermal stability of the Mn(II) and Pb(II) complexes after γ-irradiation compared to those before γ–irradiation, while no changes in the Zn(II) and Hg(II) complexes were observed. The optimized geometric structures of the ligand and metal complexes are discussed regarding density functional theory calculations (DFT). The antimicrobial activities of the ligand and metal complexes against several bacterial and fungal stains were screened before and after irradiation. The Hg(II) complex has shown excellent antibacterial activity before and after γ-irradiation. In vitro cytotoxicity screening of the ligand and the Mn(II) and Zn(II) complexes before and after γ-irradiation disclosed that both the ligand and Mn(II) complex exhibited higher activity against human liver (Hep-G2) than Zn(II). Molecular docking was performed on the active site of MK-2 and showed good results.  相似文献   

18.
2-Formyl-, 2-acetyl- and 2-benzoylpyridine N(4)-cyclohexylsemicarbazone and N(4)-cyclohexylthiosemicarbazone complexes of cobalt(II, III), nickel(II) and copper(II) have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, coordination is by the neutral ligand, the main exceptions being the cobalt(III) complexes of the three thiosemicarbazones and three of the benzoylpyridine derivatives. Thus, bonding is via the pyridyl nitrogen, azomethine nitrogen and thione/thiolato sulfur. The five-coordinate copper(II) complex of 2-acetylpyridine N(4)-cyclohexylthiosemicarbazone, [Cu(HAc4CHex)Cl2], approaches square pyramidal stereochemistry with the basal Cu—Cl bond significantly shorter than the apical Cu—Cl bond. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The reactions of the tridentate hydrazone ligand, N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide (HL), obtained by condensation of 2-acetylpyridine with acetic hyadrazide, with copper nitrate trihydrate in the presence of thiocyanate, or with CuCl2 produce two distinct coordination compounds, namely a one-dimensional helical coordination chain of [CuL(NCS)]n (1) units, and a doubly chlorido-bridged dinuclear complex [Cu2L2Cl2] (2) (where L=CH3C(O)=N–N=CCH3C5H4N). Single-crystal X-ray structural determination studies reveal that in complex 1, a deprotonated hydrazone ligand L coordinates a copper(II) ion that is bridged to two neighbouring metal centres by SCN anions, generating a one-dimensional helical coordination chain. In complex 2, two symmetry-related, adjacent copper(II) coordination entities are doubly chlorido-bridged, producing a dicopper entity with a Cu⋅⋅⋅Cu distance of 3.402 (1) Å. The two coordination compounds have been fully characterised by elemental analysis, spectroscopic techniques including IR, UV–vis and electron paramagnetic resonance, and variable-temperature magnetic studies. The biological effects of 1 and 2 on the viability of human colorectal carcinoma cells (COLO-205 and HT-29) were evaluated using an MTT assay, and the results indicate that these complexes induce a decrease in cell-population growth of human colorectal carcinoma cells with apoptosis.  相似文献   

20.
Yi  Long  Zhu  Li-Na  Ding  Bin  Cheng  Peng  Liao  Dai-Zheng  Zhai  Yu-Ping  Yan  Shi-Ping  Jiang  Zong-Hui 《Transition Metal Chemistry》2004,29(2):200-204
Two novel complexes, [Cu(HL)2(H2O)]2(OH)2(ClO4)2·1.5H2O (1) and [Cu(HL)2]Cl2·4H2O (2), have been prepared by reacting copper salts with the 4-amino-3-ethyl-1,2,4-triazole-5-thione (HL) ligand in neutral solution and in HCl (6 mol L–1) medium, respectively. They were characterized by FT-IR and u.v.–vis. spectra, and the structures were determined by single crystal X-ray diffraction techniques. In both complexes, the triazole ligand chelated the metal ions through the amine and thione substituents on the five-membered ring. Complex (1) has a square-pyramidal copper(II) ion coordinated by two triazole ligands and one water molecule. Unlike (1), the Cu2+ ion in (2) displays its characteristic Jahn–Teller distortion with the distance of the Cl anions to metal ion further away than that of the triazole ligands. The most intriguing structural features of the title complexes are that the HL ligands chelate copper(II) ions through the N(1) and S(1) atoms, in a cis mode in (1) and a trans mode in (2). In both cases, self-assembled crystals, by supramolecular contacts simultaneously, form two multi-dimensional frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号