首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-step optimization strategy is used to improve the thermoelectric performance of SnTe via modulating the electronic structure and phonon transport. The electrical transport of self-compensated SnTe (that is, Sn1.03Te) was first optimized by Ag doping, which resulted in an optimized carrier concentration. Subsequently, Mn doping in Sn1.03−xAgxTe resulted in highly converged valence bands, which improved the Seebeck coefficient. The energy gap between the light and heavy hole bands, i.e. ΔEv decreases to 0.10 eV in Sn0.83Ag0.03Mn0.17Te compared to the value of 0.35 eV in pristine SnTe. As a result, a high power factor of ca. 24.8 μW cm−1 K−2 at 816 K in Sn0.83Ag0.03Mn0.17Te was attained. The lattice thermal conductivity of Sn0.83Ag0.03Mn0.17Te reached to an ultralow value (ca. 0.3 W m−1 K−1) at 865 K, owing to the formation of Ag7Te4 nanoprecipitates in SnTe matrix. A high thermoelectric figure of merit (z T≈1.45 at 865 K) was obtained in Sn0.83Ag0.03Mn0.17Te.  相似文献   

2.
A two‐step optimization strategy is used to improve the thermoelectric performance of SnTe via modulating the electronic structure and phonon transport. The electrical transport of self‐compensated SnTe (that is, Sn1.03Te) was first optimized by Ag doping, which resulted in an optimized carrier concentration. Subsequently, Mn doping in Sn1.03?xAgxTe resulted in highly converged valence bands, which improved the Seebeck coefficient. The energy gap between the light and heavy hole bands, i.e. ΔEv decreases to 0.10 eV in Sn0.83Ag0.03Mn0.17Te compared to the value of 0.35 eV in pristine SnTe. As a result, a high power factor of ca. 24.8 μW cm?1 K?2 at 816 K in Sn0.83Ag0.03Mn0.17Te was attained. The lattice thermal conductivity of Sn0.83Ag0.03Mn0.17Te reached to an ultralow value (ca. 0.3 W m?1 K?1) at 865 K, owing to the formation of Ag7Te4 nanoprecipitates in SnTe matrix. A high thermoelectric figure of merit (z T≈1.45 at 865 K) was obtained in Sn0.83Ag0.03Mn0.17Te.  相似文献   

3.
Thermoelectric (TE) materials convert heat energy directly into electricity, and introducing new materials with high conversion efficiency is a great challenge because of the rare combination of interdependent electrical and thermal transport properties required to be present in a single material. The TE efficiency is defined by the figure of merit ZT=(S2σ) T/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the total thermal conductivity, and T is the absolute temperature. A new p‐type thermoelectric material, CsAg5Te3, is presented that exhibits ultralow lattice thermal conductivity (ca. 0.18 Wm?1 K?1) and a high figure of merit of about 1.5 at 727 K. The lattice thermal conductivity is the lowest among state‐of‐the‐art thermoelectrics; it is attributed to a previously unrecognized phonon scattering mechanism that involves the concerted rattling of a group of Ag ions that strongly raises the Grüneisen parameters of the material.  相似文献   

4.
Under DFT calculations, a systematic investigation is carried out to explore the structures and oxygen evolution reaction (OER) catalytic activities of a series of 2D single-atom catalyst (SAC) systems, which are constructed by doping the transition metal (TM) atoms in group VIII into the cavities of rigid phthalocyanine carbide (pc-C3N2). We can find that when Co, Rh, Ir and Ru atoms are doped in the small or large cavities of a pc-C3N2 monolayer, they can be used as high-activity centers of OER. All these four new TM@C3N2 nanostructures can exhibit very low overpotential values in the range of 0.33~0.48 V, even smaller than the state-of-the-art IrO2 (0.56 V), which indicates considerably high OER catalytic activity. In particular, the Rh@C3N2 system can show the best OER performance, given that doped Rh atoms can uniformly serve as high-OER-active centers, regardless of the size of cavity. In addition, a detailed mechanism analysis was carried out. It is found that in these doped pc-C3N2 systems, the number of outer electrons, the periodic number of doped TM atoms and the size of the embedded cavity can be considered the key factors affecting the OER catalytic activity, and excellent OER catalytic performance can be achieved through their effective cooperation. These fascinating findings can be advantageous for realizing low-cost and high-performance SAC catalysts for OER in the near future.  相似文献   

5.
A pulse method was used to measure the thermal conductivity, specific heat capacity C p and thermal diffusivityξ of polycrystalline ZnIn2Se4 in the temperature range 300–600 K. The temperature dependence of λ, C p and ξ demonstrated a light decrease for this material in the temperature range 300–600 K, indicating that there is not a significant change in the structure in this temperature range; this was confirmed by DTA measurements. The results showed that the mechanism of heat transfer is due mainly to phonons; the contributions of electrons and dipoles are very small. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The hole-phonon interaction contributing to the thermal conductivity of three p-type samples of InSb is analyzed between temperatures of 2 and 100 K. In addition to the phonon scattering by bound and free holes, other phonon scattering such as boundary, point defect and phonons are considered. Both relaxation rates for q≤2k F and for q>2k F are used for free hole-phonon scattering. The role of screening due to plasma on hole-phonon scattering is also included. The Callaway model for thermal conductivity is utilized from which an excellent fit to the experimental data is obtained over the whole temperature range. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Ferrous gluconate dihydrate (FeC12H22O14⋅2H2O), was prepared and its thermal decomposition was studied by means of simultaneous thermal analysis, supplemented with a two probe d.c. electrical conductivity measurements under the atmospheres of static air, dynamic air and dynamic nitrogen. Under all the atmospheres final product was found to be α-Fe2O3 with FeO, γ-Fe2O3, Fe3O4 etc. as probable intermediates. γ-Fe2O3 was formed under the atmosphere of dynamic air containing water vapour. γ-Fe2O3 thus synthesised was characterised for its structure, morphology, thermal and magnetic behaviour. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
杜英喆  张恒  苑世领 《化学学报》2021,79(6):787-793
采用分子动力学模拟方法研究了Al2O3/聚甲基二硅氧烷(PDMS)复合材料在300 K时的传热行为,通过分析热传导、温度梯度以及导热增强等理论数据,讨论了不同半径以及不同浓度的Al2O3填料粒子对PDMS传热的影响.结果 表明随着体积分数的增大,Al2O3/PDMS复合材料的热传导先减小后增加.并且当Al2O3填充粒子...  相似文献   

9.
TG and DTA studies on Me3SnO2PCl2, Me2Sn(O2PCl2)2 and Ph3SnO2PCl2 were carried out under dynamic argon atmosphere. The results show that the decomposition proceeds in different stages leading to the formation of Sn3(PO4)2 as a stable product. This compound was characterized by IR spectroscopy. Decomposition schemes involving reductive elimination reactions were proposed.  相似文献   

10.
Mg-Al-CO3与Zn-Al-CO3水滑石热稳定性差异的研究   总被引:12,自引:0,他引:12  
层状双金属氢氧化物(Layered double hydroxides,简称LDHs)是一种类近年来发展迅速的阴离了型粘土,又称水滑石,其组成通式为[M(II)1-xM(III)x(OH)2]x(OH)2]^x+Ax/n^n-mH2O,其中M(II)是二介金属离子,M(III)是三价金属离子,A^n-是阴离子,这种材料是由相互平行的层板组成,层板带有永在电荷,层间具有可交换的阴离子以维持电荷平衡,通过离子交换可在层间嵌入不同的基团,制备许多功能材料,被广泛作催化剂、吸附剂及油田化学品等,已引起人们的关注^[1-4]。有关Mg-Al-CO3与Zn-Al-CO3水滑石的合成及性能研究国内外已有大量报道^[1,2],本文对两者热稳定性存在的差异进行了研究,这对深化此类材料的认识具有参考作用。  相似文献   

11.
Results concerning the thermal behaviour of Yb2O3-doped CeO2 samples irradiated with CO2 laser beams in continuous wave are presented.
Zusammenfassung Es werden Ergebnisse einer Untersuchung des thermischen Verhaltens von CeO2-Proben dargelegt, die mit CO2-Laser bestraht wurden.
  相似文献   

12.
The article describes a convenient and efficient synthetic route for the construction of 2-aroylbenzofuran-3-ols from readily available diverse methyl salicylates and phenacyl bromides using K2CO3 as catalyst in dimethylformamide as solvent at room temperature. The reaction involves two steps, which occur in quick succession within 1 h to deliver the product with reasonably high yields. All the synthesized 2-aroylbenzofuran-3-ols (4a–u) were subjected for their antimicrobial studies, and some of these have shown prominent activity.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   


13.
Thermal decomposition of Zr/KClO4 priming compositions containing different concentration of additives, such as graphite, Fe2O3 and Al2O3 have been studied by DSC/TG techniques. The firing characteristics of these primer mixtures have also been examined by Bruceton test and by adiabatic calorimeter. The results of these experiments suggest that strong interaction has been occurred between KClO4 and Fe2O3 in the solid state. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Tozaki  K.  Masuda  R.  Matsuda  S.  Tokitomo  C.  Hayashi  H.  Inaba  H.  Yoshimura  Y.  Kimura  T. 《Journal of Thermal Analysis and Calorimetry》2001,64(1):331-339
A new method to measure heat flux and thermal expansion simultaneously with a temperature resolution of milli-Kelvin is presented to observe the multistage transitions. At least six thermal anomalies are observed between 402 and 403 K in BaTiO3 simultaneously in heat flux and thermal expansion in the cooling process. The correspondence of the anomalies observed in the two physical properties is excellent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The variation of dispersion of Pt on Al2O3 support with sintering time is measured and the value of equilibrium dispersion of Pt is obtained directly. It is found that a General Power Law Expression can fit the experimental data well.  相似文献   

16.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

17.
采用水热法制备了0D/2D复合Ti3C2Tx MXene,利用X射线衍射、动态光散射和荧光光谱表征了其结构与形貌,结果表明形成了量子点吸附于纳米片的Ti3C2Tx复合结构(QDT)。相比未引入量子点的Ti3C2Tx,由QDT组装得到的自支撑膜电极的电化学性能有了显著提高:在三电极体系中,扫速为5 mV·s-1时,比电容为338 F·g-1,当扫速达到2 000 mV·s-1,电容保持率达到46%;在两电极体系中,0.5 A·g-1时的比电容达到216 F·g-1,10 000次循环后电容保持率为87%。以上性能可归结于:量子点提供了更多的离子吸附位点,且纳米片尺寸减小,缩短了离子传输路径。  相似文献   

18.
The ternary system Li2O-Al2O3-B2O3 is reinvestigated with solid-state reaction and X-ray powder diffraction technique to clarify some long-standing uncertainties. The phase relations are constructed based on the phase identifications of 51 ternary samples. Six ternary compounds, Li2AlB5O10, LiAlB2O5, Li3AlB2O6, Li2AlBO4, LiAl7B4O17 and a compound with a composition close to 0.66Li2O·0.06Al2O3·0.28B2O3, are observed or confirmed in this system, and the thermal stability of these ternary compounds is also discussed on the basis of DTA experimental results.  相似文献   

19.
Fe2O(SO4)2 is a secondary product of the decomposition of FeSO4⋅H2O. Part I of this study presents results on the synthesis of Fe2O(SO4)2 in gaseous environment containing either low or high concentration of oxygen. In this paper the existence of differences between the structures of Fe2O(SO4)2 and Fe2(SO4)3 is proved on the basis of a detailed thermal study of Fe2O(SO4)2 upon dynamic heating (differential thermal analysis) and upon isothermal heating (thermal-analytic balance) in various gaseous environments as well as by presenting kinetic data on the processes of decomposition of both compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
以硝酸铈铵和尿素为反应物,γ-氨丙基三乙氧基硅烷(KH550)为助剂,通过沉淀反应制得了单晶菱形CeOHCO3片状物。然后将CeOHCO3在600℃空气气氛中灼烧获得了菱形CeO2。通过XRD和SEM对反应物中是否含有KH550助剂所得的产物进行了分析,结果发现只有含有KH550才能获得菱形CeOHCO3片状物,并且在灼烧过程中产物的形貌仍保持菱形。然后采用TEM对菱形CeOHCO3和CeO2进行了表征,结果发现CeOHCO3为单晶产物而灼烧后所得的CeO2为多晶产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号