首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the lung airway epithelium is associated with the epithelium-leukocyte interaction, critical for the pathogenesis of various lung airway inflammatory diseases such as asthma. However, little is known about how ICAM-1 is up-regulated in human airway epithelial cells. In this study, we show that tumor TNF-alpha induces monocyte adhesion to A549 human lung airway epithelium and also up-regulation of ICAM-1 expression. These effects were significantly diminished by pre-treatment with diphenyliodonium (DPI), an inhibitor of NADPH oxidase-like flavoenzyme. In addition, the level of reactive oxygen species (ROS) was increased in response to TNF-alpha in A549 cells, suggesting a potential role of ROS in the TNF-alpha-induced signaling to ICAM-1 expression and monocyte adhesion to airway epithelium. Further, we found out that expression of RacN17, a dominant negative mutant of Rac1, suppressed TNF-alpha-induced ROS generation, ICAM-1 expression, and monocyte adhesion to airway epithelium. These findings suggest that Rac1 lies upstream of ROS generation in the TNF-alpha-induced signaling to ICAM-1 expression in airway epithelium. Finally, pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-kappaB, reduced TNF-alpha-induced ICAM-1 expression and both DPI and RacN17 significantly diminished NF-kappaB activation in response to TNF-alpha. Together, we propose that Rac1-ROS-linked cascade mediate TNF-alpha-induced ICAM-1 up-regulation in the airway epithelium via NF-kappaB-dependent manner.  相似文献   

2.
Korean Red ginseng (KRG), commonly used in traditional medicine, has anti-inflammatory, anti- oxidative, and anti-tumorigenic properties. Asian sand dust (ASD) is known to aggravate upper and lower airway inflammatory responses. BEAS-2B cells were exposed to ASD with or without KRG or ginsenoside Rg3. Mucin 5AC (MUC5AC), MUC5B, and MUC8 mRNA and protein expression levels were determined using quantitative RT-PCR and enzyme-linked immunosorbent assay. Nuclear factor kappa B (NF-κB), activator protein 1, and mitogen-activated protein kinase expression and activity were determined using western blot analysis. ASD induced MUC5AC, MUC5B, and MUC8 mRNA and protein expression in BEAS-2B cells, which was significantly inhibited by KRG and Rg3. Although ASD-induced mucin expression was associated with NF-κB and p38 mitogen-activated protein kinase (MAPK) activity, KRG and Rg3 significantly suppressed only ASD-induced NF-κB expression and activity. KRG and Rg3 inhibited ASD-induced mucin gene expression and protein production from bronchial epithelial cells. These results suggest that KRG and Rg3 have potential for treating mucus-producing airway inflammatory diseases.  相似文献   

3.
House dust mites (HDM) are critical factors in airway inflammation. They activate respiratory epithelial cells to produce reactive oxygen species (ROS) and activate Toll-like receptor 4 (TLR4). ROS induce the expression of inflammatory cytokines in respiratory epithelial cells. Lycopene is a potent antioxidant nutrient with anti-inflammatory activity. The present study aimed to investigate whether HDM induce intracellular and mitochondrial ROS production, TLR4 activation, and pro-inflammatory cytokine expression (IL-6 and IL-8) in respiratory epithelial A549 cells. Additionally, we examined whether lycopene inhibits HDM-induced alterations in A549 cells. The treatment of A549 cells with HDM activated TLR4, induced the expression of IL-6 and IL-8, and increased intracellular and mitochondrial ROS levels. TAK242, a TLR4 inhibitor, suppressed both HDM-induced ROS production and cytokine expression. Furthermore, lycopene inhibited the HDM-induced TLR4 activation and cytokine expression, along with reducing the intracellular and mitochondrial ROS levels in HDM-treated cells. These results collectively indicated that the HDM induced TLR4 activation and increased intracellular and mitochondrial ROS levels, thus resulting in the induction of cytokine expression in respiratory epithelial cells. The antioxidant lycopene could inhibit HDM-induced cytokine expression, possibly by suppressing TLR4 activation and reducing the intracellular and mitochondrial ROS levels in respiratory epithelial cells.  相似文献   

4.
Expression of matrix metalloproteinase-9 (MMP-9) is associated with airway remodeling and tissue injury in asthma. However, little is known about how MMP-9 is up-regulated in airway epithelial cells. In this study, we show that phorbol myristate acetate (PMA) induces MMP-9 expression via a protein kinase Calpha (PKCalpha)-dependent signaling cascade in BEAS-2B human lung epithelial cells. Pretreatment with either GF109203X, a general PKC inhibitor, or Go6976, a PKCalpha/beta isozyme inhibitor, inhibited PMA-induced activation of the MMP-9 promoter, as did transient transfection with PKCalpha antisense oligonuclotides. PMA activated NF-kappaB by phosphorylating IkappaB in these cells and this was also inhibited by GF109203X and Go6976, suggesting that PKCa acts as an upstream regulator of NF-kappaB in PMA-induced MMP-9 induction. Our results indicate that a "PKCalpha-NF- kappaB"-dependent cascade is involved in the signaling leading to PMA-induced MMP-9 expression in the lung epithelium.  相似文献   

5.
Airway stenosis in childhood is resistant to conventional treatments. Endoscope-assisted photodynamic therapy (PDT) is a potent candidate for the therapeutic modality owing to the easy approach to the tracheal lesion and low degree of invasiveness. The aim of the present study was to examine whether a photosensitizer preferentially accumulates in the lesion of airway stenosis in order to explore the possible applicability of PDT. The tracheal mucosa of rabbits was scraped off, and the rabbits were intravenously administered with Photofrin. The tissue concentration of Photofrin was quantitatively measured by fluorometric analysis. Granulation formation was seen in the mucosa-deprived lesion, causing airway stenosis. Photofrin concentration in the granulation tissue was four-fold higher than that in the intact trachea and 10-fold higher than that in the liver, spleen, skin and muscle. Photofrin preferentially accumulated in the lesion of airway stenosis. A preliminary experiment on PDT using transtracheal illumination showed an amelioration of airway stenosis, resulting in reduction in respiratory stridor.  相似文献   

6.
The most challenging task of creating a bioengineered ovary to restore fertility in cancer patients is choosing an appropriate biomaterial to encapsulate isolated preantral follicles and ovarian cells. In this study, as a biocompatible and biodegradable biomaterial containing fibrin-like bioactivity and manageable physical properties, PEGylated fibrin aims to encapsulate isolated ovarian stromal cells as a first step of creating an engineered ovarian tissue. For this purpose, human ovarian stromal cells were isolated from frozen-thawed ovarian tissue and cultured in the PEGylated fibrin hydrogels (PEG:Fib), which were fabricated by combining two different molar ratios of PEG:Fib (10:1 and 5:1) and two thrombin concentrations. The samples were analyzed at days 0 and 5 of in vitro for cell density, proliferation (Ki67), and apoptosis (caspase-3). Moreover, LIVE/DEAD and PrestoBlue assays assessed cell viability and proliferation on days 1, 3, and 5. The effect of PEGylation on the biodegradation behavior of fibrin was evaluated by measuring the remaining mass ratio of non-modified fibrin, PEG:Fib 10:1, and PEG:Fib 5:1 hydrogels after 1, 2, 3, 5, 8, 11, and 15 days. The results showed that PEGylated fibrin hydrogels enhanced scaffold stability and supported cell viability and proliferation. In addition, PEG:Fib 5:1 T50 indicated a significantly higher cell density dynamic and non-significantly lower expression of caspase-3 on day 5. Besides, uniformity of cell distribution inside the hydrogel and a tendency to a high rate of Ki67-positive cells was observed in PEG:Fib 10:1 T50 hydrogels. In conclusion, this study reveals the positive effects of PEGylated fibrin hydrogels on isolated human ovarian stromal cells. Based on such promising findings, we believe that this matrix should be tested to encapsulate isolated human ovarian follicles.  相似文献   

7.
In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor‐associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor‐associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor‐associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1–glycopeptide vaccines and analyzed their structure–activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.  相似文献   

8.
Mycotoxins are secondary metabolites of filamentous fungi which can cause a wide range of systemic effects. Human health effects of inhaled mycotoxins remain poorly documented, despite the large amounts present, associated with air-borne particles. Among these mycotoxins, sterigmatocystin is one of the most prevalent. Because its chemical structure is close to that of the aflatoxins, we studied its metabolism and its cellular consequences when in contact with the airway epithelium, using the mass spectral signature from the 10% (13)C uniformly enriched sterigmatocystin. The metabolism was studied in vitro, using recombinant cytochrome P450s enzymes, and in porcine tracheal epithelial cell (PTEC) primary cultures at an air-liquid interface. The metabolites were analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry detection. Expressed enzymes and PTECs were exposed to uniformly (13)C-enriched sterigmatocystin to confirm the relationship between sterigmatocystin and its metabolites because this isotopic cluster shape is conserved for all metabolites and their product ions. Incubation of sterigmatocystin with recombinant cytochrome P450 1A1 led to the formation of three metabolites identified as monohydroxysterigmatocystin, dihydroxysterigmatocystin and one glutathione adduct, the latter after the formation of a transient intermediate. In the PTEC cultures, sterigmatocystin metabolism resulted in a glucuro-conjugate. Two other products were detected, a sulfo-conjugate and a glucuro-conjugate of hydroxysterigmatocystin upon cytochrome P450 1A1 induction. This is the first study to report sterigmatocystin metabolism in airway epithelium, and it suggests that, contrary to the aflatoxins, sterigmatocystin is mainly detoxified into its conjugates and is unable to produce significant amounts of reactive metabolites in respiratory cells, at least in pigs.  相似文献   

9.
For identification of clinically relevant masses to predict status, grade, relapse and prognosis of colorectal cancer, we applied Matrix‐assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to a tissue micro array containing formalin‐fixed and paraffin‐embedded tissue samples from 349 patients. Analysis of our MALDI‐IMS data revealed 27 different m/z signals associated with epithelial structures. Comparison of these signals showed significant association with status, grade and Ki‐67 labeling index. Fifteen out of 27 IMS signals revealed a significant association with survival. For seven signals (m/z 654, 776, 788, 904, 944, 975 and 1013) the absence and for eight signals (m/z 643, 678, 836, 886, 898, 1095, 1459 and 1477) the presence were associated with decreased life expectancy, including five masses (m/z 788, 836, 904, 944 and 1013) that provided prognostic information independently from the established prognosticators pT and pN. Combination of these five masses resulted in a three‐step classifier that provided prognostic information superior to univariate analysis. In addition, a total of 19 masses were associated with tumor stage, grade, metastasis and cell proliferation. Our data demonstrate the suitability of combining IMS and large‐scale tissue micro arrays to simultaneously identify and validate clinically useful molecular marker. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Paz AC  Javaherian S  McGuigan AP 《Lab on a chip》2011,11(20):3440-3448
Despite the importance of epithelial tissue in most major organs there have been limited attempts to tissue engineer artificial epithelium. A key feature of mature epithelium is the presence of an apical-basal polarization, which develops over 7-20 days in culture. Currently, the most widely used 2D system to generate polarized epithelium in vitro involves the filter insert culture system, however this system is expensive, laborious and requires large numbers of cells per sample. We have developed a set of micropatterning techniques to spatially control the organization of epithelial cells into microsheets on filter inserts under the culture conditions necessary to induce epithelial cell polarization. Micropatterning improves cell uniformity within each microsheet, allows multiple sheet analysis on one filter insert, and reduced cell number requirements. We describe an agarose patterning method that allows maintenance of cell patterns for over 15 days, the time necessary to induce apical-basal polarization. We also describe a Parafilm? patterning method that allows patterning for 5 to 15 days depending on cell type and only allows the generation of stripes and circular microsheets. The parafilm? method however is extremely straightforward and could be easily adopted by any laboratory without the need of access to specialized microfabrication equipment. We also demonstrate that micropatterning epithelial cells does not alter the localization of the apical-basal marker ZO-1 or the formation of cilia, a marker of epithelium maturation. Our methods provide a novel tool for studying epithelial biology in polarized epithelium microsheets of controlled size.  相似文献   

11.
The respiratory tract is the primary site of exposure to airborne compounds, with the bronchial epithelium providing one of the first lines of defence. A growing need exists for an accurate in vitro model of the bronchial epithelium. Here, normal human bronchial epithelial (NHBE) cells cultured at an air/liquid interface create a fully differentiated, in-vivo-like model of the human bronchial epithelium. Developmental characterisation includes (i) trans-epithelial electrical resistance, (ii) morphology and (iii) bronchial cell specific stains/markers. It is concluded that the basal/progenitor cells create a pseudo-stratified, mucociliary NHBE model containing basal, serous, Clara, goblet and ciliated cells, reflective of the normal human bronchial epithelium (days 24-33 ALI culture).  相似文献   

12.
Current tracheal stents palliatively relieve malignant tracheal stenosis but cannot treat the tumor, resulting in the occurrence of restenosis due to tumor progressive over-growth. Moreover, the stents block the entire tracheal mucosa contact with them and thus prevent mucus/sputum discharge, causing an airway blockage. In order to overcome those shortcomings, we study a novel self-expandable C-shaped tracheal stent loaded with paclitaxel (PTX), which consists of an inner poly (ε-caprolactone) layer, a middle Fe3O4 magnetic nanoparticles loaded poly (ε-caprolactone) layer and an outer PTX-loaded ethylene-vinyl acetate copolymer layer containing phase-change 1-hexadecanol. The C-shaped tracheal stents are easily fabricated on a roller by using a self-made specific three-dimensional printer. It is found that the stents present unidirectional PTX release, good self-expanding and appropriate trachea supporting properties, and generate heat to raise temperature under an alternating magnetic field, which facilitates temperature-responsive PTX release and permeation in tracheal tissue. The stents have good biosafety in rabbits and keep airway patency for the investigated period (1 month) without the occurrence of mucus/sputum blockage after implantation in rabbit trachea. This study provides a scientific basis for the development of novel self-expandable C-shaped tracheal stents with combinatorial tracheal support and local chemotherapy.  相似文献   

13.
The EGFR plays an essential role in goblet cell hyperplasia and mucus hypersecretion. EGFR has an intrinsic tyrosine kinase activity that, when activated, induces the production of MUC5AC through the signaling kinase cascade in the airway epithelium. We have investigated the effects of an EGFR tyrosine kinase inhibitor, gefitinib, on ovalbumin (OVA)-induced, allergic inflammation in airway epithelia of mice. OVA-sensitized mice were pretreated with gefitinib at two different doses (12.5 and 50 mg/kg) and then challenged with OVA. The OVA challenge increased the total cell count and eosinophil count in bronchoalveolar lavage fluid (BALF), as well as the concentrations of T-helper2 (Th2) cytokines, such as IL-4 and IL-13, overall eosinophil recruitment in the lung tissue and airway hyperresponsiveness (AHR). Pretreatment with gefitinib reduced the inflammatory cell counts and released cytokine concentrations (IL-4 and IL-13) in BALF, as well as eosinophil recruitment in the lungs and AHR, in a dose-dependent manner. This was associated with decreased EGFR and Akt phosphorylation. We showed that gefinitib inhibits EGFR and phosphoinositol 3'-kinase (PI3K)/Akt activation which were activated in OVA sensitized mice. These findings suggest that inhibitors of the EGFR cascade may have a role in the treatment of asthma.  相似文献   

14.
There are three types of foreign body reactions to plastic implants: 1) reactions due to physical characteristics of the implant, 2) reactions due directly to chemical properties of the implant, and 3) immune reactions. Responses which vary with the physical properties of the implant are epithelial encapsulation of the plastic, epithelial keratinization in cutaneous implants, thickening of the connective tissue fibrous capsule, formation of ground substance, and the presence of giant cells. Responses related directly to chemical toxicity of the plastic are epithelial hypertrophy (with mild irritants), inhibition of epithelial growth (with more toxic irritants), connective tissue inflammation, accumulation of a cellular glycoproteins, and vacuolization of host tissue. Finally, reactions due to infection or the presence of other antigens are characterized by inhibition of epithelial growth, invasion of epithelium by leukocytes, and proliferation of inflammatory tissue with a large population of plasma and other round cells.

There is always a tissue response to a plastic implant, even when the material is chemically inert. However, with use of a suitable design and a chemically inert material, and with sterile conditions, plastic implants with only minimal host tissue response may be achieved. Infection, not physical (design) or chemical properties, remains the primary problem with current implantation procedures.  相似文献   

15.
The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.  相似文献   

16.
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.

We developed new class of designated antibodies targeting of “dynamic neoepitopes” elaborated by disease-specific O-glycosylation at the immunodominant mucin domains.  相似文献   

17.
Advances in technology, such as laser capture microdissection (LCM), have allowed for the specific sampling of cells within their natural functional micro-environment. In model systems using LCM, we have studied the global protein expression profiles of airway epithelial cells during a response to allergen provocation. Bronchial epithelial cells were first identified and phenotyped histologically in snap frozen lung samples of experimentally sensitised mice. Consecutive thin sections of whole lung were then sampled using preparative LCM procedures. Lysates of the captured epithelium (7500 shots) or whole lung were prepared for two-dimensional gel electrophoretic separation and 1400 protein spots were annotated by image analysis. Protein identities were established by matching peptide masses detected using matrix-assisted laser desorption ionization time-of-flight MS as well as electrospray ionization MS-MS sequencing. Using the Mascot database of protein/peptide identities high significance scores in terms of sequence coverage (range 22-70%) and number of peptides (range 7-22 peptides/protein) were obtained for approximately 500 proteins, with examples listed in Table 1. In quantitative terms, the LCM procedure allows the statistical sampling of singular populations of cells distributed throughout tissues and organs. The absolute number of cells required for "entry level" measurements of protein profiles will vary over an order of magnitude depending on the physical size and frequency of the cells being studied within each biological compartment as well as the dynamic range of the proteins being measured, and the absolute limits of detection within the technologies being employed.  相似文献   

18.
It is difficult to treat patients with acquired airway stenosis, and the quality of life of such patients is therefore lowered. We have suggested the application of photodynamic therapy (PDT) as a new treatment for airway stenosis and have determined the efficacy of PDT in animal disease models using a second-generation photosensitizer with reduced photosensitivity. An airway stenosis rabbit model induced by scraping of the tracheal mucosa was administered NPe6 (5 mg kg−1), and the stenotic lesion was irradiated with 670 nm light emitted from a cylindrical diffuser tip at 60 J cm−2 under bronchoscopic monitoring. PDT using NPe6 improved airway stenosis ( P  = 0.043) and respiratory stridor. A significant prolongation of survival time was seen in the PDT-treated animals compared to that in the untreated animals ( P  = 0.025) and 44% of the treated animals achieved long-term survival (>60 days). In conclusion, PDT using NPe6 is effective for improvement in airway stenosis.  相似文献   

19.
In contrast to normal cells, the glycoprotein profile on epithelial tumor cells is distinctly altered. Due to an incomplete formation of the glycan side-chains resulting from a premature sialylation, additional peptide epitopes become accessible to the immune system in mucin-type glycoproteins on tumor cells. These tumor-associated structure alterations constitute the basis for a selective immunological attack on cancer cells. For the construction of immunostimulating antigens, glycopeptide partial structures from the mucins MUC1 and MUC4 carrying the tumor-associated sialyl-T(N), alpha2,6-sialyl-T and alpha2,3-sialyl-T antigens have been synthesized. Employing different linkers such as the allylic HYCRON or the fluoride-sensitive PTMSEL anchor, the antigenic glycopeptide structures were constructed on the solid phase utilizing pre-assembled glycosyl amino acid building blocks prepared in solution by convergent chemical or chemoenzymatic strategies. The proliferation of cytotoxic T cells has been induced applying a construct composed of a sialyl-T(N) MUC1-glycopeptide conjugated with a tetanus toxin T cell peptide epitope.  相似文献   

20.
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies (αMUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, αMUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on αMUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号