首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute kidney injury (AKI) is a dose-limiting side effect of cisplatin therapy in cancer patients. However, effective therapies for cisplatin-induced AKI are not available. Oxidative stress, tubular cell death, and inflammation are known to be the major pathological processes of the disease. 6-Shogaol is a major component of ginger and exhibits anti-oxidative and anti-inflammatory effects. Accumulating evidence suggest that 6-shogaol may serve as a potential therapeutic agent for various inflammatory diseases. However, whether 6-shogaol exerts a protective effect on cisplatin-induced renal side effect has not yet been determined. The aim of this study was to evaluate the effect of 6-shogaol on cisplatin-induced AKI and to investigate its underlying mechanisms. An administration of 6-shogaol after cisplatin treatment ameliorated renal dysfunction and tubular injury, as shown by a reduction in serum levels of creatinine and blood urea nitrogen and an improvement in histological abnormalities. Mechanistically, 6-shogaol attenuated cisplatin-induced oxidative stress and modulated the renal expression of prooxidant and antioxidant enzymes. Apoptosis and necroptosis induced by cisplatin were also suppressed by 6-shogaol. Moreover, 6-shogaol inhibited cisplatin-induced cytokine production and immune cell infiltration. These results suggest that 6-shogaol exhibits therapeutic effects against cisplatin-induced AKI via the suppression of oxidative stress, tubular cell death, and inflammation.  相似文献   

2.
One of the most common diseases affecting people and leading to high morbidity is kidney injury. The alleviation of inflammation and apoptosis is considered a potential therapeutic approach for kidney injury. Sophocarpine (SOP), a tetracyclic quinolizidine alkaloid, exhibits various beneficial biological properties. To investigate the effects of SOP on isoproterenol (ISO)-induced kidney injury, we randomly divided mice into four groups: Control, ISO, ISO+SOP (20 mg/kg) and ISO+SOP (40 mg/kg). SOP was administered intraperitoneally to the mice over two weeks, accompanied by intraperitoneal stimulation of ISO (10 mg/kg) for another four weeks. After the mice were sacrificed, several methods such as ELISA, staining (H&E, TUNEL, DHE and Masson) and Western blotting were applied to detect the corresponding indicators. The kidney injury serum biomarkers SCr and BUN increased after the ISO challenge, while this effect was reversed by treatment with SOP. Pathological changes induced by ISO were also reversed by treatment with SOP in the staining. The inflammatory cytokines IL-β, IL-6, TNF-α, MCP-1 and NLRP3 increased after the challenge with ISO, while they were decreased by treatment with SOP. The apoptotic proteins cleaved-caspase-3 and Bax increased, while Bcl-2 decreased, after the challenge with ISO, and these effects were reversed by treatment with SOP. The antioxidant proteins SOD-1 and SOD-2 decreased after being stimulated by ISO, while they increased after the treatment with SOP. The fibrotic proteins collagen I, collagen III, α-SMA, fibronectin, MMP-2 and MMP-9 increased after the challenge with ISO, while they decreased after the treatment with SOP. We further discovered that the TLR-4/NF-κB and TGF-β1/Smad3 signaling pathways were suppressed, while the Nrf2/HO-1 signaling pathway was activated. In summary, SOP could alleviate ISO-induced kidney injury by inhibiting inflammation, apoptosis, oxidative stress and fibrosis. The molecular mechanisms were suppression of the TLR-4/NF-κB and TGF-β1/Smad3 signaling pathways and activation of the Nrf2/HO-1 signaling pathway, indicating that SOP might serve as a novel therapeutic strategy for kidney injury.  相似文献   

3.
The present study investigated the cardioprotective properties of 6-gingerol against alcohol-induced ROS-mediated cardiac tissue damage in rats. Experiments were conducted on 4 groups of rats, orally treated with control, 6-gingerol (10 mg/kg body weight), alcohol (6 g/kg body weight) and combination of 6-gingerol plus alcohol for two-month. In the results, we found 6-ginger treatment to alcohol-fed rats substantially suppressed ROS production in cardiac tissue. Alcohol-induced elevated 8-OHDG and protein carbonyls which represent oxidative modification of DNA and proteins were completely reversed by 6-gingerol. This was further endorsed by restored superoxide dismutase and catalase activities with 6-gingerol against alcohol-induced loss. The elevated cardiac biomarkers (CK-MB, cTn-T, cTn-I) and dyslipidemia in alcohol-intoxicated rats was significantly reversed by 6-gingerol. Furthermore, alcohol-induced apoptosis characterized by overexpression of cytochrome C, caspase-8 and caspase-9 was diminished with 6-gingerol treatment. Transmission electron microscope images conferred the cardioprotective properties of 6-gingerol as we have seen less structural derangements in mitochondria and reappearance of myofilaments. Our findings conclude that 6-ginger effectively protect alcohol-induced ROS-mediated cardiac tissue damage, which may be due to its potent antioxidant efficacy. Therefore, 6-gingerol could be a potential therapeutic molecule that can be used in the treatment of alcohol-induced myocardial injury.  相似文献   

4.
Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells.  相似文献   

5.
铅的肾脏毒性与细胞凋亡的关系   总被引:10,自引:0,他引:10  
为了解铅的肾脏毒性以及与细胞凋亡的关系,建立原位末端标记法检测细胞凋亡。用醋酸铅腹腔注射染毒大鼠,染毒剂量分别为5,10,20mgPb^2+/kg体重,1次/天,共染毒3天,对照组腹腔注射醋酸钠20mg Na^+/kg体重,结果,于染毒第二天开始,各染毒组动物体重的增长速率已开始下降,与对照组比较差异有显著性(P〈0.05)。肾脏脏器系数,染毒组显著高于对照组(P〈0.05)。染毒鼠的肾脏组织凋亡  相似文献   

6.
The accumulation of reactive oxygen species (ROS) triggers oxidative stress in cells by oxidizing and modifying various cellular components, preventing them from performing their inherent functions, ultimately leading to apoptosis and autophagy. Glutathione (GSH) is a ubiquitous intracellular peptide with multiple functions. In this study, a hydrogen peroxide (H2O2)-induced oxidative damage model in IPEC-J2 cells was used to investigate the cellular protection mechanism of exogenous GSH against oxidative stress. The results showed that GSH supplement improved the cell viability reduced by H2O2-induced oxidative damage model in IPEC-J2 cells in a dose-dependent manner. Moreover, supplement with GSH also attenuated the H2O2-induced MMP loss, and effectively decreased the H2O2-induced mitochondrial dysfunction by increasing the content of mtDNA and upregulating the expression TFAM. Exogenous GSH treatment significantly decreased the ROS and MDA levels, improved SOD activity in H2O2-treated cells and reduced H2O2-induced early apoptosis in IPEC-J2 cells. This study showed that exogenous GSH can protect IPEC-J2 cells against apoptosis induced by oxidative stress through mitochondrial mechanisms.  相似文献   

7.
Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.  相似文献   

8.
Drug-induced liver and kidney damage is an emergent clinical issue that should be addressed. Rosmarinic acid (RA) has obvious anti-inflammatory and antioxidant effects, so we evaluated the anti-inflammatory and antioxidant effects of RA pretreatment on serum and liver and kidney tissues of cisplatin (CP)-treated mice and explored the possible mechanisms. The results showed that RA pretreatment effectively downregulated the serum, liver, and kidney levels of ALT, AST, BUN, and CRE and the inflammatory factors IL-1β, IL-6, and TNF-α, and simultaneously enhanced the total antioxidant capacity of the liver and kidney. RA pretreatment significantly reduced the levels of MPO, MDA, and NO in liver and kidney tissue, inhibited the mRNA expression of IL-1β, IL-6, and TNF-α in liver and kidney tissue, activated the Nrf2 signaling pathway, and upregulated the mRNA expression of downstream target genes. Our findings show that RA could effectively prevent and alleviate acute liver and kidney injury caused by CP.  相似文献   

9.
Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.  相似文献   

10.
Lipopolysaccharide (LPS) is an endotoxin that plays a crucial role in septic acute kidney injury (AKI). Hispidulin is a natural flavonoid that possesses various biological activities. Recent studies have shown that hispidulin administration alleviates various inflammatory diseases in animal models. This study aimed to investigate the renoprotective effect of hispidulin on LPS-induced AKI. Male C57BL/6 mice were administered LPS (10 mg/kg) with or without hispidulin (50 mg/kg). Hispidulin administration attenuated renal dysfunction, histological alterations, and the upregulation of neutrophil gelatinase-associated lipocalin. This flavonoid also reduced cytokine production and Toll-like receptor 4 expression, inhibited nuclear factor-κB and mitogen-activated protein kinase cascades, and alleviated immune cell infiltration. The oxidation of lipids and DNA was also inhibited by hispidulin administration. This antioxidant effect of hispidulin was associated with the downregulation of NADPH oxidase 4, the activation of catalase and superoxide dismutase activities, and the restoration of glutathione levels. Moreover, hispidulin administration attenuated tubular cell apoptosis by inhibiting caspase-3 pathway. These data suggest that hispidulin ameliorates endotoxin-induced kidney injury by suppressing inflammation, oxidative stress, and tubular cell death.  相似文献   

11.
A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII-COUPY ( 3 ), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII-COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.  相似文献   

12.
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.  相似文献   

13.
Triple Negative Breast Cancer (TNBC) is the aggressive and lethal type of breast malignancy that develops resistance to current therapies. Combination therapy has proven to be an effective strategy on TNBC. We aimed to study whether the nano-formulation of polyphenolic curcumin (Gemini-Cur) would affect the cisplatin-induced toxicity in MDA-MB-231 breast cancer cells. MDA-MB-231 cells were treated with Gemini-Cur, cisplatin and combination of Gemini-Cur/Cisplatin in a time- and dose-dependent manner. Cell viability was studied by using MTT, fluorescence microscopy and cell cycle assays. The mode of death was also determined by Hoechst staining and annexin V-FITC. Real-time PCR and western blotting were employed to detect the expression of BAX and BCL-2 genes. Our data demonstrated that Gemini-Cur significantly sensitizes cancer cells to cisplatin (combination index ≤ 1) and decreases IC50 values in comparison with Gemini-cur or cisplatin. Further studies confirmed that Gemini-Cur/Cisplatin suppresses cancer cell growth through induction of apoptosis (p < 0.001). In conclusion, the data confirm the synergistic effect of polyphenolic curcumin on cisplatin toxicity and provide attractive strategy to attain its apoptotic effect on TNBC.  相似文献   

14.
Glioblastoma (GBM) is the most common and most deadly primary malignant brain tumor. Current therapies are not effective, the average survival of GBM patients after diagnosis being limited to few months. Therefore, the discovery of new treatments for this highly aggressive brain cancer is urgently needed. Chalcones are synthetic and naturally occurring compounds that have been widely investigated as anticancer agents. In this work, three chalcone derivatives were tested regarding their inhibitory activity and selectivity towards GBM cell lines (human and mouse) and a non-cancerous mouse brain cell line. The chalcone 1 showed the most potent and selective cytotoxic effects in the GBM cell lines, being further investigated regarding its ability to reduce critical hallmark features of GBM and to induce apoptosis and cell cycle arrest. This derivative showed to successfully reduce the invasion and proliferation capacity of tumor cells, both key targets for cancer treatment. Moreover, to overcome potential systemic side effects and its poor water solubility, this compound was encapsulated into liposomes. Therapeutic concentrations were incorporated retaining the potent in vitro growth inhibitory effect of the selected compound. In conclusion, our results demonstrated that this new formulation can be a promising starting point for the discovery of new and more effective drug treatments for GBM.  相似文献   

15.
Salmonella typhimurium infection is associated with gastrointestinal disorder and cellular injury in the liver of both humans and animals. Cinnamaldehyde, the main component of essential oil from cinnamon, has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. However, it remains unknown whether cinnamaldehyde can alleviate Salmonella typhimurium infection-induced liver injury in mice. In the present study, we found that cinnamaldehyde attenuated Salmonella typhimurium-induced body weight loss, the increase of organ (liver and spleen) indexes, hepatocyte apoptosis, and the mortality rate in mice. Further study showed that cinnamaldehyde significantly alleviated Salmonella typhimurium-induced liver injury as shown by activities of alanine transaminase, aspartate transaminase, and myeloperoxidase, as well as malondialdehyde. The increased mRNA level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and chemokines (CCL2 and CCL3) induced by Salmonella typhimurium were significantly abolished by cinnamaldehyde supplementation. These alterations were associated with a regulatory effect of cinnamaldehyde on TLR2, TLR4, and MyD88. 16S rDNA sequence analysis showed that Salmonella typhimurium infection led to upregulation of the abundances of genera Akkermansia, Bacteroides, Alistipes, Muribaculum, and Prevotellaceae UCG-001, and downregulation of the abundances of genera Lactobacillus, Enterorhabdus, and Eggerthellaceae (unclassified). These alterations were reversed by cinnamaldehyde supplementation. In conclusion, cinnamaldehyde attenuated the inflammatory response, oxidative stress, and apoptosis in the liver of Salmonella typhimurium-infected mice. Supplementation of cinnamaldehyde might be a preventive strategy to alleviate liver injury caused by Salmonella typhimurium infection in humans and animals.  相似文献   

16.
Esculetin is a coumarin-derived compound with antioxidant and anti-inflammatory properties. The current study aims to evaluate the therapeutic implications of esculetin on retinal dysfunction and uncover the underlying mechanisms. Tert-butyl hydroperoxide (t-BHP) at a concentration of 300 μM was used to induce oxidative stress in human retinal pigment epithelial cell line (ARPE-19) cells. Esculetin at concentrations below 250 μM did not cause cytotoxicity to ARPE-19 cells. Cell viability analysis confirmed that t-BHP induced oxidative injury of ARPE-19 cells. However, ARPE-19 cells were protected from t-BHP-induced oxidative injury by esculetin in a concentration-dependent manner. As a result of the TUNEL assay to confirm apoptosis, esculetin treatment reduced the number of TUNEL-positive cells. Esculetin down-regulated the expression levels of Bax, Caspase-3, and PARP and up-regulated the expression level of Bcl2. Collectively, this study demonstrates that esculetin exerts potent antioxidant properties in ARPE-19 cells, inhibiting t-BHP-induced apoptosis under the regulation of apoptotic factors.  相似文献   

17.
Chronic kidney disease (CKD) is a progressive systemic disease, which changes the function and structure of the kidneys irreversibly over months or years. The final common pathological manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the therapeutic benefits of natural products against modern diseases. Substantial attention has been focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based pharmacological data have shown that flavonoids play an important role in preventing and managing CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this review, we summarize the function and beneficial properties of common flavonoids for the treatment of CKD and the relative risk factors of CKD.  相似文献   

18.
Oat (Avena sativa) is well known for its various health benefits. The protective effect of oat extract against oxidative stress-induced apoptosis in human keratinocytes HaCaT was determined. First, extracts of two varieties of oat, Daeyang and Choyang, were analyzed for fat-soluble antioxidants such as α-tocotrienol, γ-oryzanols, lutein and zeaxanthin using an UPLC system and for antioxidant activity using a DPPH assay. Specifically, an 80% ethanol extract of Daeyang oat (Avena sativa cv. Daeyang), which had high amounts of antioxidants and potent radical scavenging activity, was further evaluated for protective effect against oxidative stress-induced cell death, intracellular reactive oxygen species levels, the phosphorylation of DNA damage mediating genes such as H2AX, checkpoint kinase 1 and 2, and p53 and the activation of apoptotic genes such as cleaved caspase-3 and 7 and poly (ADP-ribose) polymerase in HaCaT cells. The Daeyang and Choyang oat 80% ethanol extracts had 26.9 and 24.1 mg/100 g γ-oryzanols, 7.69 and 8.38 mg/100 g α-tocotrienol, 1.25 and 0.34 mg/100 g of lutein and 1.20 and 0.17 mg/100 g of zeaxanthin, respectively. The oat 80% ethanol extract treatment (Avena sativa cv. Daeyang) had a protective effect on oxidative stress-induced cell death in HaCaT cells. In addition, the oat 80% ethanol extracts led to a significant decrease in the intracellular ROS level at a concentration of 50–200 μg/mL, the attenuation of DNA damage mediating genes and the inhibition of apoptotic caspase activities in a dose dependent manner (50–200 μg/mL). Thus, the current study indicates that an oat (Avena sativa cv. Daeyang) extract rich in antioxidants, such as polyphenols, avenanthramides, γ-oryzanols, tocotrienols and carotenoids, has a protective role against oxidative stress-induced keratinocyte injuries and that oat may a useful source for oxidative stress-associated skin damage.  相似文献   

19.
To date, there is no effective treatment for alcoholic liver disease, despite its prevalence world-wide. Because alcohol consumption is associated with oxidative stress-induced liver injury and pro-inflammatory responses, naturally occurring antioxidants and/or anti-inflammatories may be potential therapeutics. Spermidine is an abundant, ubiquitous polyamine that has been found to display strong antioxidant and anti-inflammatory properties. To further investigate whether spermidine is an effective intervention for alcohol-induced liver disease, we examined its hepatoprotective properties using a two-hit, chronic ethanol and acute lipopolysaccharide (LPS)-induced mouse model of liver injury. We determined that spermidine administration prevented ethanol and LPS-induced increases in liver injury using plasma ALT as a readout. Furthermore, histological analysis of tissue from control and treated animals revealed that the pathology associated with ethanol and LPS treatment was prevented in mice additionally treated with spermidine. As predicted, spermidine also prevented ethanol and LPS-induced oxidative stress by decreasing the levels of both reactive oxygen species (ROS) and lipid peroxidation. We further determined that spermidine treatment prevented the nuclear translocation of nuclear factor κB (NFκB) by blocking the phosphorylation of the inhibitory protein, IκB, thereby preventing expression of pro-inflammatory cytokines. Finally, by measuring expression of known markers of hepatic stellate cell activation and monitoring collagen deposition, we observed that spermidine also prevented alcohol and LPS-induced hepatic fibrosis. Together, our results indicate that spermidine is an antioxidant thereby conferring anti-inflammatory and anti-fibrotic effects associated with alcoholic liver injury.  相似文献   

20.
Quercetin, a flavonoid with promising therapeutic potential, has been shown to protect from cisplatin nephrotoxicity in rats following intraperitoneal injection, but its low bioavailability curtails its prospective clinical utility in oral therapy. We recently developed a micellar formulation (P-quercetin) with enhanced solubility and bioavailability, and identical nephroprotective properties. As a first aim, we herein evaluated the oral treatment with P-quercetin in rats, which displayed no nephroprotection. In order to unravel this discrepancy, quercetin and its main metabolites were measured by HPLC in the blood and urine after intraperitoneal and oral administrations. Whilst quercetin was absorbed similarly, the profile of its metabolites was different, which led us to hypothesize that nephroprotection might be exerted in vivo by a metabolic derivate. Consequently, we then aimed to evaluate the cytoprotective capacity of quercetin and its main metabolites (quercetin 3-O-glucoside, rutin, tamarixetin, isorhamnetin and quercetin 3-O-glucuronide) against cisplatin toxicity, in HK-2 and NRK-52E tubular cell lines. Cells were incubated for 6 h with quercetin, its metabolites or vehicle (pretreatment), and subsequently 18 h in cotreatment with 10–300 μM cisplatin. Immediately after treatment, cell cultures were subject to the MTT technique as an index of cytotoxicity and photographed under light microscopy for phenotypic assessment. Quercetin afforded no direct cytoprotection and quercetin-3-O-glucuronide was the only metabolite partially preventing the effect of cisplatin in cultured tubule cells. Our results identify a metabolic derivative of quercetin contributing to its nephroprotection and prompt to further explore exogenous quercetin-3-O-glucuronide in the prophylaxis of tubular nephrotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号