首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress caused by the production of reactive oxygen species (ROS) plays a major role in inflammatory processes. We hypothesized that modulation of ROS via quercetin may protect against oxidative stress and inflammation. Thus, this study aimed to investigate the effects of quercetin on oxidative stress and inflammation in lung epithelial A549 cells. The lipopolysaccharide (LPS)-induced elevation of intracellular ROS levels was reduced after quercetin treatment, which also almost completely abolished the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) induced by LPS stimulation. In addition, quercetin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and reduced levels of inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6, which had increased significantly after LPS exposure. Our data demonstrated that quercetin decreased ROS-induced oxidative stress and inflammation by suppressing NOX2 production.  相似文献   

2.
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.  相似文献   

3.
日益累积的证据表明,HIV感染和艾滋病进展与氧化应激密切相关,HIV/AIDS病人处于高度氧化应激状态,抗氧化剂补充有望成为艾滋病预防和治疗的重要措施之一。通过HIV感染者的氧化应激,氧化应激在艾滋病致病机理中的作用和HIV/AIDS病人的抗氧化剂补充3个方面论述了氧化应激与艾滋病的关系。  相似文献   

4.
Dioscorea hispida Dennst. locally known as “ubi gadung” has been used as a traditional remedy and source of carbohydrate among Malaysians. To assess the effect of Dioscorea hispida aqueous extract (DHAE) on the production of reactive oxygen species (ROS) and their effects on DNA damage in Sprague Dawley rat’s placental tissues, pregnant rats were randomly divided into four groups. The animals were orally treated with distilled water (negative control) and three different concentrations of DHAE (250, 500 and 1000 mg/kg body weight (BW)) from gestation day 6 until 20. The oxidative stress in placental tissues was evaluated at day 21 by measuring the level of ROS, superoxide dismutase (SOD) and lipid peroxidation biomarker, malondialdehyde (MDA) while comet assay was used for DNA damage. There was no significant production of ROS and SOD activities in all groups. Significant changes were observed in the MDA level at 1000 mg/kg BW DHAE. Comet assay revealed a significant increase (p < 0.05) of DNA damage on animals treated with 250 and 500 mg/kg BW DHAE but not at the highest concentration. It was postulated that the placental cells could have undergone necrosis which destroys all components including DNA. This occurrence simultaneously reduces the levels of DNA damage which can be represented by lower level of tail moments. This finding correlates with our histopathological examination where necrotic cells of spongiotrophoblast were observed in the basal zone of placental tissue. The high amount of hydrogen cyanide and other compounds in 1000 mg/kg BW DHAE could elevate the lipid peroxidation and directly induce cell necrosis which requires further investigation.  相似文献   

5.
Skin aging is a complex process involving photoaging and glycation stress, which share some fundamental pathways and have common mediators. They can cause skin damage and collagen degradation by inducing oxidative stress and the accumulation of reactive oxygen species (ROS). Chenopodium formosanum (CF), also known as Djulis, is a traditional cereal in Taiwan. This study investigated the protection mechanisms of CF extract against ultraviolet (UV) radiation and advanced glycation end products (AGEs)-induced stress. The results indicated that CF extract had strong antioxidant and free radical scavenging effects. It could reduce UV-induced intracellular ROS generation and initiate the antioxidant defense system by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in human skin fibroblasts. CF extract modulated mitogen-activated protein kinase (MAPK) and transformed growth factor-beta (TGF-β) signaling pathways to alleviate oxidative stress-induced skin aging. Moreover, the results revealed that CF extract not only promoted collagen synthesis but also improved aging-induced collagen degradation. CF extract attenuated AGEs-induced ROS production and the upregulation of receptor for AGEs (RAGE). The overall results suggest that CF extract provides an effective anti-aging strategy by preventing skin damage from oxidative stress and collagen loss with potent antioxidant, anti-photoaging, and antiglycation activities.  相似文献   

6.
Doxorubicin (DXB) is one of the most commonly used anticancer agents for treating solid and hematological malignancies; however, DXB-induced cardiorenal toxicity presents a limiting factor to its clinical usefulness in cancer patients. Costunolide (COST) is a naturally occurring sesquiterpene lactone with excellent anti-inflammatory, antioxidant and antiapoptotic properties. This study evaluated the effect of COST on DXB-induced cardiorenal toxicity in rats. Rats were orally treated with COST for 4 weeks and received weekly 5 mg/kg doses of DXB for three weeks. Cardiorenal biochemical biomarkers, lipid profile, oxidative stress, inflammatory cytokines, histological and immunohistochemical analyses were evaluated. DXB-treated rats displayed significantly increased levels of lipid profiles, markers of cardiorenal dysfunction (aspartate aminotransferase, creatine kinase, lactate dehydrogenase, troponin T, blood urea nitrogen, uric acid and creatinine). In addition, DXB markedly upregulated cardiorenal malondialdehyde, tumor necrosis factor-α, interleukin-1β, interleukin-6 levels and decreased glutathione, superoxide dismutase and catalase activities. COST treatment significantly attenuated the aforementioned alterations induced by DXB. Furthermore, histopathological and immunohistochemical analyses revealed that COST ameliorated the histopathological features and reduced p53 and myeloperoxidase expression in the treated rats. These results suggest that COST exhibits cardiorenal protective effects against DXB-induced injury presumably via suppression of oxidative stress, inflammation and apoptosis.  相似文献   

7.
The models of oxidative damage-induced aging were established by adding ethanol (C2H5OH), hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA) to zebrafish embryos in this research. To find effective protective drugs/foods, Salvianolic acid B (Sal B) was added after the embryos were treated by these oxidative reagents. After being treated with ethanol, H2O2 and 6-OHDA, the morphological changes were obvious and the deformities included spinal curvature, heart bleeding, liver bleeding, yolk sac deformity and pericardial edema, and the expression of oxidative stress-related genes Nrf2b, sod1 and sod2 and aging-related genes myl2a and selenbp1 were significantly up-regulated compared to the control group. While after adding 0.05 μg/mL and 0.5 μg/mL Sal B to the ethanol-treated group, death rates and MDA levels decreased, the activity of antioxidant enzyme (SOD, CAT and GSH-Px) changed and Nrf2b, sod1, sod2, myl2a, selenbp1, p53 and p21 were down-regulated compared to the ethanol-treated group. The bioinformatics analysis also showed that oxidative stress-related factors were associated with a variety of cellular functions and physiological pathways. In conclusion, Sal B can protect against aging through regulating the Keap1/Nrf2 pathway as well as antioxidative genes and enzyme activity.  相似文献   

8.
9.
The first aerobic oxidative coupling of resveratrol and its analogues by mesoporous graphitic carbon nitride as a bioinspired catalyst with visible light has been developed. With this method, δ‐viniferin and its analogues were synthesized in moderate to high yield. The metal‐free conditions, visible‐light irradiation, and the ideal oxidant, molecular oxygen, make this coupling reaction environmental friendly and practical.  相似文献   

10.
The goal of the work was to study changes in the activity of the angiotensin-converting enzyme (ACE) and production of reactive oxygen species (ROS) in the aorta of rats after the intraperitoneal injection of stereoisomers of catechin and gallate. The activity of ACE in the aorta sections was determined by measuring the hydrolysis of hippuryl-l-histidyl-l-leucine. The production of ROS in the aorta sections was estimated from the oxidation of dichlorodihydrofluorescein. The time and dose dependences of the effect of catechin stereoisomers and gallate on ACE activity and ROS production in the aorta were studied. It was shown that (+)-catechin and gallate increased the ACE activity and ROS production, and (−)-catechin and (−)-epicatechin did not influence these parameters. The doses of (+)-catechin and gallate that increased the ACE activity to a half-maximal value (AD50) were 0.04 and 0.03 µg/kg, respectively. Fucoidin, a blocker of leukocyte adhesion to the endothelium, reduced the ACE activity to the control level in the aortas of (+)-catechin-treated rats.  相似文献   

11.
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appears to be a major one. Oxidative imbalance, occurring in MPS and resulting in increased levels of reactive oxidative species, causes damage of various biomolecules, leading to worsening of symptoms, especially in the central nervous system (but not restricted to this system). A few therapeutic options are available for some types of MPS, including enzyme replacement therapy and hematopoietic stem cell transplantation, however, none of them are fully effective in reducing all symptoms. A possibility that molecules with antioxidative activities might be useful accompanying drugs, administered together with other therapies, is discussed in light of the potential efficacy of MPS treatment.  相似文献   

12.
Hydrogen sulfide (H2S) exhibits promising protective effects in many (patho)physiological processes, as evidenced by recent reports using synthetic H2S donors in different biological models. Herein, we report the design and evaluation of compounds denoted PeroxyTCM, which are the first class of reactive oxygen species (ROS)‐triggered H2S donors. These donors are engineered to release carbonyl sulfide (COS) upon activation, which is quickly hydrolyzed to H2S by the ubiquitous enzyme carbonic anhydrase (CA). The donors are stable in aqueous solution and do not release H2S until triggered by ROS, such as hydrogen peroxide (H2O2), superoxide (O2?), and peroxynitrite (ONOO?). We demonstrate ROS‐triggered H2S donation in live cells and also demonstrate that PeroxyTCM‐1 provides protection against H2O2‐induced oxidative damage, suggesting potential future applications of PeroxyTCM and similar scaffolds in H2S‐related therapies.  相似文献   

13.
The aim of this study was to determine the pattern of alleviation effects of calcium (Ca), magnesium (Mg), and potassium (K) on copper (Cu)-induced oxidative toxicity in grapevine roots. Root growth, Cu and cation accumulation, reactive oxygen species (ROS) production, and antioxidant activities were examined in grapevine roots grown in nutrient solutions. The experimental setting was divided into three sets; each set contained a check (Hoagland solution only) and four treatments of simultaneous exposure to 15 μM Cu with four cation levels (i.e., Ca set: 0.5, 2.5, 5, and 10 mM Ca; Mg set: 0.2, 2, 4, and 8 mM Mg; K set: 0.6, 2.4, 4.8, and 9.6 mM K). A damage assessment model (DAM)-based approach was then developed to construct the dose-effect relationship between cation levels and the alleviation effects on Cu-induced oxidative stress. Model parameterization was performed by fitting the model to the experimental data using a nonlinear regression estimation. All data were analyzed by a one-way analysis of variance (ANOVA), followed by multiple comparisons using the least significant difference (LSD) test. The results showed that significant inhibitory effects on the elongation of roots occurred in grapevine roots treated with 15 μM Cu. The addition of Ca and Mg significantly mitigated phytotoxicity in root growth, whereas no significant effect of K treatment on root growth was found. With respect to oxidative stress, ROS and malondialdehyde (MDA) contents, as well as antioxidant (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) activities, were stimulated in the roots after exposure to 15 μM Cu for three days. Moreover, H2O2 levels decreased significantly as Ca, Mg, and K concentrations increased, indicating that the coexistence of these cations effectively alleviated Cu-induced oxidative stress; however, alleviative effects were not observed in the assessment of the MDA content and antioxidant enzyme activities. Based on the DAM, an exponential decay equation was developed and successfully applied to characterize the alleviative effects of Ca, Mg, and K on the H2O2 content induced by Cu in the roots. In addition, compared with Mg and K, Ca was the most effective cation in the alleviation of Cu-induced ROS. Based on the results, it could be concluded that Cu inhibited root growth and Ca and Mg absorption in grapevines, and stimulated the production of ROS, lipid peroxidation, and antioxidant enzymes. Furthermore, the alleviation effects of cations on Cu-induced ROS were well described by the DAM-based approach developed in the present study.  相似文献   

14.
In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug “Cytolcentella® cream”. Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.  相似文献   

15.
Among rare earth elements, cerium has the unique ability of regulating the growth of plant cells and the biosynthesis of metabolites at different stages of plant development. The signal pathways of Ce3+-mediated ginsenosides biosynthesis in ginseng hairy roots were investigated. At a low concentration, Ce3+ improved the elongation and biomass of hairy roots. The Ce3+-induced accumulation of ginsenosides showed a high correlation with the reactive oxygen species (ROS), as well as the biosynthesis of endogenous methyl jasmonate (MeJA) and ginsenoside key enzyme genes (PgSS, PgSE and PgDDS). At a Ce3+ concentration of 20 mg L−1, the total ginsenoside content was 1.7-fold, and the total ginsenosides yield was 2.7-fold that of the control. Malondialdehyde (MDA) content and the ROS production rate were significantly higher than those of the control. The activity of superoxide dismutase (SOD) was significantly activated within the Ce3+ concentration range of 10 to 30 mg L−1. The activity of catalase (CAT) and peroxidase (POD) strengthened with the increasing concentration of Ce3+ in the range of 20–40 mg L−1. The Ce3+ exposure induced transient production of superoxide anion (O2) and hydrogen peroxide (H2O2). Together with the increase in the intracellular MeJA level and enzyme activity for lipoxygenase (LOX), there was an increase in the gene expression level of MeJA biosynthesis including PgLOX, PgAOS and PgJMT. Our results also revealed that Ce3+ did not directly influence PgSS, PgSE and PgDDS activity. We speculated that Ce3+-induced ROS production could enhance the accumulation of ginsenosides in ginseng hairy roots via the direct stimulation of enzyme genes for MeJA biosynthesis. This study demonstrates a potential approach for understanding and improving ginsenoside biosynthesis that is regulated by Ce3+-mediated signal transduction.  相似文献   

16.
Testicular dysfunction is caused by chronic exposure to environmental pollution, such as malathion, which causes oxidative stress, promoting cell damage. Autophagy is a key cellular process for eliminating malfunctioning organelles, such as the mitochondria (mitophagy), an eminent source of reactive oxygen species (ROS). Autophagy is crucial for protection against testicular damage. Rifaximin (RFX) is a non-absorbable antibiotic that can reshape the gut microbiome, making it effective in different gastrointestinal disorders. Interestingly, the gut microbiome produces short chain fatty acids (SCFAs) in the circulation, which act as signal molecules to regulate the autophagy. In this study, we investigated the regulatory effects of RFX on gut microbiota and its circulating metabolites SCFA and linked them with the autophagy in testicular tissues in response to malathion administration. Moreover, we divided the groups of rats that used malathion and RFX into a two-week group to investigate the mitophagy process and a four-week group to study mitochondriogenesis. The current study revealed that after two weeks of cotreatment with RFX, apoptosis was inhibited, oxidative stress was improved, and autophagy was induced. More specifically, PINK1 was overexpressed, identifying mitophagy activation. After four weeks of cotreatment with RFX, there was an increase in acetate and propionate-producing microflora, as well as the circulating levels of SCFAs. In accordance with this, the expression of PGC-1α, a downstream to SCFAs action on their receptors, was activated. PGC-1α is an upstream activator of mitophagy and mitochondriogenesis. In this sense, the protein expression of TFAM, which regulates the mitochondrial genome, was upregulated along with a significant decrease in apoptosis and oxidative stress. Conclusion: we found that RFX has a positive regulatory effect on mitophagy and mitochondria biogenesis, which could explain the novel role played by RFX in preventing the adverse effects of malathion on testicular tissue.  相似文献   

17.
赵晋源  张乾  王坚  张琦  李恒  杜亚平 《化学学报》2022,80(4):570-580
生命从呼吸中获得氧气, 氧气再进一步在线粒体中将糖类等氧化得到能量, 提供给生命过程使用. 然而在氧化过程中, 会生成高度活泼的活性氧. 当体内控制失衡的时候, 它的浓度会大大增加, 发生氧化应激, 对机体产生不可逆的破坏, 引起衰老、肿瘤、心血管以及神经性疾病等. 抵抗活性氧的核心物质是抗氧化物, 它的存在使氧化应激受到控制, 从而保护机体免遭伤害. 本文对国内外近年来在活性氧自由基捕获方面的研究进行系统的综述, 通过梳理, 提出研究的金字塔型三级结构. 设计抗氧化物大分子与无机纳米粒子复合的纳米杂化自由基捕获器可以一方面解决无机纳米粒子的毒性问题, 另一方面还可以赋予纳米粒子额外的功能. 期待这篇综述文章能为改性纳米粒子捕捉活性氧提供一些有益思路, 为功能高分子材料与杂化纳米技术在生物医学领域的探索提供借鉴.  相似文献   

18.
The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.  相似文献   

19.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride; PQ), an effective and widely used herbicide, was commercially introduced in 1962. It is reduced by the electron donor NADPH, and then reduced PQ transfers the electrons to molecular oxygen, resulting in the production of reactive oxygen species (ROS), which are related to cellular toxicity. However, the influence of continuous hypoxia on PQ-induced ROS production has not fully been investigated. We evaluated in vitro the protective effect of continuous hypoxia on PQ-induced cytotoxicity in the human carcinogenic alveolar basal epithelial cell line (A549 cells) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and live and dead assay, and by measuring lactate dehydrogenase (LDH) release. To elucidate the mechanism underlying this effect, we monitored the immunofluorescence of intracellular ROS and measured malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Continuous hypoxia protected the A549 cells from PQ-induced cytotoxicity. Continuous hypoxia for a period of 24 h significantly reduced intracellular ROS, decreased MDA concentration in the supernatant, and normalized SOD and GPx activities. Continuous hypoxia attenuated PQ-induced cell toxicity in A549 cells. This protective effect might be attributable to the suppression of PQ-induced ROS generation.  相似文献   

20.
Cataracts are an ailment representing the leading cause of blindness in the world. The pathogenesis of cataracts is not clear, and there is no effective treatment. An increasing amount of evidence shows that oxidative stress and autophagy in lens epithelial cells play a key role in the occurrence and development of cataracts. Buddleja officinalis Maxim flavonoids (BMF) are natural antioxidants and regulators that present anti-inflammatory and anti-tumor effects, among others. In this study, we optimized the extraction method of BMFs and detected three of their main active monomers (luteolin, apigenin, and acacetin). In addition, a model of oxidative damage model using rabbit lens epithelial cells induced by hydrogen peroxide (H2O2). By detecting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and OH (OH), the expression of autophagosomes and autolysosomes were observed after MRFP-GFP-LC3 adenovirus was introduced into the cells. Western blotting was used to detect the expression of Beclin-1 and P62. Our research results showed that the optimal extraction parameters to obtain the highest yield of total flavonoids were a liquid–solid ratio of 1:31 g/mL, an ethanol volume fraction of 67%, an extraction time of 2.6 h, and an extraction temperature of 58 °C. Moreover, the content of luteolin was 690.85 ppb, that of apigenin was 114.91 ppb, and the content of acacetin was 5.617 ppb. After oxidative damage was induced by H2O2, the cell survival rate decreased significantly. BMFs could increase the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decrease the levels of malondialdehyde (MDA) and OH (OH). After the MRFP-GFP-LC3 virus was introduced into rabbit lens epithelial cells and detecting the expression of P62 and Beclin-1, we found that the intervention of BMF could promote the binding of autophagosomes to lysosomes. Compared with the model group, the level of P62 in the low-, middle-, and high-dose groups of BMF was significantly down-regulated, the level of Beclin-1 was significantly increased, and the difference was statistically significant (p < 0.05). In other words, the optimized extraction method was better than others, and the purified BMF contained three main active monomers (luteolin, apigenin, and acacetin). In addition, BMFs could ameliorate the H2O2-induced oxidative damage to rabbit lens cells by promoting autophagy and regulating the level of antioxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号