首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four enantiopure 1,3‐diethynylallenes (DEAs) with OH termini were attached to the rim of a resorcin[4]arene cavitand. The system undergoes conformational switching between a cage form, closed by a circular H‐bonding array, and an open form, with the tertiary alcohol groups reaching outwards. The cage form is predominant in apolar solvents, and the open conformation in small, polar solvents. Both states were confirmed in solution and in X‐ray co‐crystal structures. ECD spectra of the alleno‐acetylenic cages (AACs) are highly conformation sensitive, the longest wavelength Cotton effect at 304 nm switches from Δ?=+191 m ?1 cm?1 for open (P)4‐AAC?acetonitrile to Δ?=?691 m ?1 cm?1 (ΔΔ?=882 m ?1 cm?1) for closed (P)4‐AAC?cyclohexane. Complete chiral resolution of (±)‐trans‐1,2‐dimethylcyclohexane was found in the X‐ray structures, with (P)4‐AAC exclusively bound to the (R,R)‐ and (M)4‐AAC to the (S,S)‐guest. Guest inclusion occurs in a higher energy diaxial conformation.  相似文献   

2.
X‐ray crystal structure analysis of the lithiated allylic α‐sulfonyl carbanions [CH2?CHC(Me)SO2Ph]Li ? diglyme, [cC6H8SO2tBu]Li ? PMDETA and [cC7H10SO2tBu]Li ? PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only O?Li bonds, almost planar allylic units with strong C?C bond length alternation and the s‐trans conformation around C1?C2. They adopt a C1?S conformation, which is similar to the one generally found for alkyl and aryl substituted α‐sulfonyl carbanions. Cryoscopy of [EtCH?CHC(Et)SO2tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone‐pair orbital at C1 strongly interacts with the C?C double bond. Low temperature 6Li,1H NOE experiments of [EtCH?CHC(Et)SO2tBu]Li in THF point to an equilibrium between monomeric CIPs having only O?Li bonds and CIPs having both O?Li and C1?Li bonds. Ab initio calculation of [MeCH?CHC(Me)SO2Me]Li ? (Me2O)2 gave three isomeric CIPs having the s‐trans conformation and three isomeric CIPs having the s‐cis conformation around the C1?C2 bond. All s‐trans isomers are more stable than the s‐cis isomers. At all levels of theory the s‐trans isomer having O?Li and C1?Li bonds is the most stable one followed by the isomer which has two O?Li bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s‐trans and s‐cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the “empty” orbitals at the Li atom. The C1?S and C1?C2 conformations are determined by the stereoelectronic effects nC–σSR* interaction and allylic conjugation. 1H DNMR spectroscopy of racemic [EtCH?CHC(Et)SO2tBu]Li, [iPrCH?CHC(iPr)SO2tBu]Li and [EtCH?C(Me)C(Et)SO2tBu]Li in [D8]THF gave estimated barriers of enantiomerization of ΔG=13.2 kcal mol?1 (270 K), 14.2 kcal mol?1 (291 K) and 14.2 kcal mol?1 (295 K), respectively. Deprotonation of sulfone (R)‐EtCH?CHCH(Et)SO2tBu (94 % ee) with nBuLi in THF at ?105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li, the deuteration and alkylation of which with CF3CO2D and MeOCH2I, respectively, proceeded with high enantioselectivities. Time‐dependent deuteration of the enantioenriched carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li in THF gave a racemization barrier of ΔG=12.5 kcal mol?1 (168 K), which translates to a calculated half‐time of racemization of t1/2=12 min at ?105 °C.  相似文献   

3.
A 2 : 4 mixture of tetrakis[4‐(4‐pyridyl)phenyl]cavitand ( 1 ) or tetrakis[4‐(4‐pyridyl)phenylethynyl]cavitand ( 2 ) and Pd(dppp)(OTf)2 self‐assembles into a homocapsule { 1 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C1 ) or { 2 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C2 ), respectively, through Pd?Npy coordination bonds. A 1 : 1 : 4 mixture of 1 , 2 , and Pd(dppp)(OTf)2 produced a mixture of homocapsules C1 , C2 , and a heterocapsule { 1 ? 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C3 ) in a 1 : 1 : 0.98 mole ratio. Selective formation (self‐sorting) of homocapsules C1 and C2 or heterocapsule C3 was controlled by guest‐induced encapsulation under thermodynamic control. Applications of Pd?Npy coordination capsules with the use of 1 were demonstrated. Capsule C1 serves as a guard nanocontainer for trans‐4,4′‐diacetoxyazobenzene to protect against the trans‐to‐cis photoisomerization by encapsulation. A chiral capsule { 1 2 ? [Pd((R)‐BINAP)]4}8+ ? (TfO?)8 ( C5 ) was also constructed. Capsule C5 induces supramolecular chirality with respect to prochiral 2,2′‐bis(alkoxycarbonyl)‐4,4′‐bis(1‐propynyl)biphenyls by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.  相似文献   

4.
We report the synthesis and structural characterization of modified Cram‐type, resorcin[4]arene‐based cavitands. Two main loci on the cavitand backbone were selected for structural modification: the upper part (wall domain) and the lower part (legs). Synthesis of unsymmetrically bridged cavitands with different wall components (i.e., 7, 8 , and 14 – 18 ) was performed by stepwise bridging of the four couples of neighboring, H‐bonded OH‐groups of octol 1a (Schemes 1, 2, 4, and 5). Cavitands with modified legs (i.e., 20, 24, 27 , and 28 ), targeted for surface immobilization, were synthesized by short routes starting from suitable aldehyde starting materials incorporating either the fully preformed leg moieties or functional precursors to the final legs (Schemes 7–10). The new cavitand substitution patterns described in this paper should enable the construction of a wide variety of functional architectures in the future. X‐Ray crystallography afforded the characterization of cavitands 2c (Fig. 3) and 24 (Fig. 7) in the vase conformation, with 2c featuring a well‐ordered CH2Cl2 guest molecule in its cavity. A particular highlight is the X‐ray crystal‐structure determination of octanitro derivative 19 (Scheme 6), which, for the first time, shows a cavitand, lacking substituents in the ortho‐position to the two O‐atoms of the four resorcinol moieties, in the kite‐conformation (Fig. 5).  相似文献   

5.
Conformational changes of amide cavitands A – C were investigated at varied temperatures and in several solvents. While cavitands A and B , with comparatively smaller substituents such as Et and iPr, were always in vase conformation in non‐polar solvents such as CDCl3, CD2Cl2, (D8)THF, and C6D6, their thermoswitching (vase to kite) was observed in polar solvents such as (D7)DMF and (D6)DMSO or in the presence of acid (TFA) and H‐bonding inhibitor (TFE). Intra‐ and interannular H‐bonds of A and B were clearly observed by low‐temperature 1H‐NMR spectra in CDCl3. No conformational change of cavitand C with bigger substituent (tBu) was observed under any tested temperature range and in polar or non‐polar solvents; C was always in the kite conformation.  相似文献   

6.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   

7.
The synthesis of new molecular complexes of U2+ has been pursued to make comparisons in structure, physical properties, and reactivity with the first U2+ complex, [K(2.2.2‐cryptand)][Cp′3U], 1 (Cp′=C5H4SiMe3). Reduction of Cp′′3U [Cp′′=C5H3(SiMe3)2] with KC8 in the presence of 2.2.2‐cryptand or 18‐crown‐6 generates [K(2.2.2‐cryptand)][Cp′′3U], 2‐K(crypt) , or [K(18‐crown‐6)(THF)2][Cp′′3U], 2‐K(18c6) , respectively. The UV/Vis spectra of 2‐K and 1 are similar, and they are much more intense than those of U3+ analogues. Variable temperature magnetic susceptibility data for 1 and 2‐K(crypt) reveal lower room temperature χMT values relative to the experimental values for the 5f3 U3+ precursors. Stability studies monitored by UV/Vis spectroscopy show that 2‐K(crypt) and 2‐K(18c6) have t1/2 values of 20 and 15 h at room temperature, respectively, vs. 1.5 h for 1 . Complex 2‐K(18c6) reacts with H2 or PhSiH3 to form the uranium hydride, [K(18‐crown‐6)(THF)2][Cp′′3UH], 3 . Complexes 1 and 2‐K(18c6) both reduce cyclooctatetraene to form uranocene, (C8H8)2U, as well as the U3+ byproducts [K(2.2.2‐cryptand)][Cp′4U], 4 , and Cp′′3U, respectively.  相似文献   

8.
Three new A,C-diamide bridged p-tert-butylcalix[6]arenes were synthesized from p-tert-butylcalix[6]arenes by bridging ClCH2CONH(CH2)nNHCOCH2Cl(n=3,4,6) in acetonitrile using K2CO3 as a base in 17%-25% yields.It was found that the bridged calix[6]arenes with shorter bridges (n=2,3,4 in N′,N′-bischloroacetodiamines) adopt cone conformation, but the last one (n=6) adopts alternate conformation, i.e., accompanying the lengthening of bridge, the conformation of A,C-bridged calix[6]arenes changes from cone to alternate.  相似文献   

9.
1‐Phosphabicyclo[3.2.1]octanes 1‐Phosphabicyclo[3.2.1]octane has been obtained by free‐radical cyclization of (2‐vinyl‐4‐pentenyl)‐phosphane in the presence of AIBN. Another approach to 1‐phosphabicyclo[3.2.1]octanes involves free‐radical cyclization of 2‐methyl‐4‐(2‐propenyl)‐phospholane synthesized by the reaction of [2‐(2‐propenyl)‐4‐pentenyl]‐phosphane with KPH2/[18]crown‐6 in THF. The bicyclic phosphanes are characterized by reactions with CS2, selenium, sulfur, NO, CH3I, and HSO3F, respectively, structural and analytical data as well as 1H, 13C, 31P, 77Se NMR spectral measurements. The steric crowding of the phosphanes as complex ligands has been estimated from 31P–1H coupling constants according to the Tolman model. The configuration of the methyl substituents as well as the conformation of the six‐membered ring were determined by NMR parameters (coupling constants, noe's) and proved by X‐ray crystal structure analysis.  相似文献   

10.
The reaction of 2‐[13C]‐1‐ethyl‐3‐isopropyl‐3,4,5,6‐tetrahydropyrimidin‐1‐ium hexafluorophosphate ([13C1]‐ 1 ‐PF6) with a slight excess (1.03 equiv) of dimeric potassium hexamethyldisilazide (“(K‐HMDS)2”) in toluene generates 2‐[13C]‐3‐ethyl‐1‐isopropyl‐3,4,5,6‐tetrahydropyrimid‐2‐ylidene ([13C1]‐ 2 ). The hindered meta‐stable N,N‐heterocyclic carbene [13C1]‐ 2 thus generated undergoes a slow but quantitative reaction with toluene (the solvent) to generate the aminal 2‐[13C]‐2‐benzyl‐3‐ethyl‐1‐isopropylhexahydropyrimidine ([13C1]‐ 14 ) through formal C? H insertion of C(2) (the “carbene carbon”) at the toluene methyl group. Despite a significant pKa mismatch (ΔpKa 1 + and toluene estimated to be ca. 16 in DMSO) the reaction shows all the characteristics of a deprotonation mechanism, the reaction rate being strongly dependent on the toluene para substituent (ρ=4.8(±0.3)), and displaying substantial and rate‐limiting primary (kH/kD=4.2(±0.6)) and secondary (kH/kD=1.18(±0.08)) kinetic isotope effects on the deuteration of the toluene methyl group. The reaction is catalysed by K‐HMDS, but proceeds without cross over between toluene methyl protons and does not involve an HMDS anion acting as base to generate a benzyl anion. Detailed analysis of the reaction kinetics/kinetic isotope effects demonstrates that a pseudo‐first‐order decay in 2 arises from a first‐order dependence on 2 , a first‐order dependence on toluene (in large excess) and, in the catalytic manifold, a complex noninteger dependence on the K‐HMDS dimer. The rate is not satisfactorily predicted by equations based on the Brønsted salt‐effect catalysis law. However, the rate can be satisfactorily predicted by a mole‐fraction‐weighted net rate constant: ?d[ 2 ]/dt=({x 2 kuncat}+{(1?x 2 ) kcat})[ 2 ]1[toluene]1, in which x 2 is determined by a standard bimolecular complexation equilibrium term. The association constant (Ka) for rapid equilibrium–complexation of 2 with (K‐HMDS)2 to form [ 2 (K‐HMDS)2] is extracted by nonlinear regression of the 13C NMR shift of C(2) in [13C1]‐ 2 versus [(K‐HMDS)2] yielding: Ka=62(±7) M ?1; δC(2) in 2 =237.0 ppm; δC(2) in [ 2 (K‐HMDS)2]=226.8 ppm. It is thus concluded that there is discrete, albeit inefficient, molecular catalysis through the 1:1 carbene/(K‐HMDS)2 complex [ 2 (K‐HMDS)2], which is found to react with toluene more rapidly than free 2 by a factor of 3.4 (=kcat/kuncat). The greater reactivity of the complex [ 2 (K‐HMDS)2] over the free carbene ( 2 ) may arise from local Brønsted salt‐effect catalysis by the (K‐HMDS)2 liberated in the solvent cage upon reaction with toluene.  相似文献   

11.
A new fulleride, (K[DB18C6])4(C60)5?12 THF, was prepared in solution using the “break‐and‐seal” approach by reacting potassium, fullerene, and dibenzo[18]crown‐6 in tetrahydrofuran. Single crystals were grown from solution by the modified “temperature difference method”. X‐ray analysis was performed revealing a reversible phase transition occurring on cooling. Three different crystal structures of the title compound at different temperatures of data acquisition are addressed in detail: the “high‐temperature phase” at 225 K (C2, Z=2, a=49.055(1), b=15.075(3), c=18.312(4) Å, β=97.89(3)°), the “transitional phase” at 175 K (C2 m, Z=2, a=48.436(5), b=15.128(1), c=18.280(2) Å, β=97.90(1)°), and the “low‐temperature phase” at 125 K (Cc, Z=4, a=56.239(1), b=15.112(3), c=36.425(7) Å, β=121.99(1)°). On cooling, partial radical recombination of C60.? into the (C60)22? dimeric dianion occurs; this is first time that the fully ordered dimer has been observed. Further cooling leads to formation of a superstructure with doubled cell volume in a different space group. Below 125 K, C60 exists in the structure in three different bonding states: in the form of C60.? radical ions, (C60)22? dianions, and neutral C60, this being without precedent in the fullerene chemistry, as well. Experimental observations of one conformation exclusively of the fullerene dimer in the crystal structure are further explained on the basis of DFT calculations considering charge distribution patterns. Temperature‐dependent measurements of magnetic susceptibility at different magnetic fields confirm the phase transition occurring at about 220 K as observed crystallographically, and enable for unambiguous charge assignment to the different C60 species in the title fulleride.  相似文献   

12.
The temperature‐dependent dynamic properties of [CuII2(ADCOO)4(DMF)2]?(DMF)2 ( 1 ) and [CuII2(ADCOO)4(AcOEt)2] ( 2 ) crystals were examined by X‐ray crystallography, 1H NMR spectroscopy, and measurements of the dielectric constants and magnetic susceptibilities (ADCOO=adamantane carboxylate, DMF=N,N‐dimethylformamide, and AcOEt=ethyl acetate). In both crystals, four ADCOO groups bridged a binuclear CuII? CuII bond, forming a paddle‐wheel [CuII2(ADCOO)4] structure. The oxygen atoms of two DMF molecules in crystal 1 and two AcOEt molecules in crystal 2 were coordinated at axial positions of the [CuII2(ADCOO)4] moiety, forming [CuII2(ADCOO)4(DMF)2] and [CuII2(ADCOO)4(AcOEt)2], respectively. Two additional DMF molecules were included in the unit cell of crystal 1 , whereas AcOEt was not included in the unit cell of crystal 2 . The structural analyses of crystal 1 at 300 K showed three‐fold rotation of the adamantyl groups, whereas rotation of the adamantyl groups of crystal 2 at 300 K was not observed. Thermogravimetric measurements of crystal 1 indicated a gradual elimination of DMF upon increasing the temperature above 300 K. The dynamic behavior of the crystallized DMF yielded significant temperature‐dependent dielectric responses in crystal 1 , which showed a huge dielectric peak at 358 K in the heating process. In contrast, only small frequency‐dependent dielectric responses were observed in crystal 2 because of the freezing of the molecular rotation of the adamantyl groups. The magnetic behavior was dominated by the strong antiferromagnetic coupling between the two S=1/2 spins of the CuII? CuII site, with magnetic exchange energies (J) of ?265 K (crystal 1 ) and ?277 K (crystal 2 ).  相似文献   

13.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

14.
Afobazole {systematic name: 2‐[2‐(morpholin‐4‐yl)ethylsulfanyl]‐1H‐benzimidazole} is a new anxiolytic drug and Actins, Auzins & Petkune [(2012). Eur. Patent EP10163962] described four polymorphic modifications. In the present study, the crystal structures of two monoclinic polymorphs, 5‐ethoxy‐2‐[2‐(morpholin‐4‐ium‐4‐yl)ethylsulfanyl]‐1H‐benzimidazol‐3‐ium dichloride, C15H23N3O2S2+·2Cl, (II) and (IV), have been established from laboratory powder diffraction data. The crystal packing and conformation of the dications in (II) and (IV) are different. In (II), there are channels in the [001] direction, which offer atmospheric water molecules an easy way of penetrating into the crystal structure, thus explaining the higher hygroscopicity of (II) compared with (IV).  相似文献   

15.
The reactions of Ln(NO3)3 with 1,4‐phenylenediacetic acid (H2PDA) under hydrothermal conditions produced two isostructural lanthanide coordination polymers with the empirical formula [Ln2(PDA)3(H2O)] · 2H2O [Ln = Nd ( 1 ), Sm ( 2 )]. Single‐crystal X‐ray diffraction analyses revealed that both contain one‐dimensionalmetal carboxylato chains, which are further connected by the–CH2C6H4CH2– spacers of PDA2– ligands to yield a three‐dimensional metal‐organic framework. Magnetic susceptibilities of 1 and 2 were measured. The experimental χmT value of both compounds decreases continuously with decreasing temperature over the whole temperature range. The best least‐squares fit of the experimental data of 1 to a theoretical equation in the temperature range of 70–300 K gives the zero‐field splitting parameter Δ = 2.21 cm–1 and the magnetic interaction between the NdIII ions 2zJ′ = –1.97 cm–1, which indicates the presence of antiferromagnetic interaction between the NdIII ions. The experimental χmT value of 2 at 2 K is much smaller than the expected value for two free SmIII ions (6H5/2, g = 2/7) in the ground state, indicating that an antiferromagnetic interaction possibly exists between SmIII ions at low temperature. Fitting the magnetic data of 2 above 110 K based on an equation deduced from the SmIII ion in a monomeric system with free‐ion approximation gave a spin‐orbit coupling parameter λ = 192(2) cm–1  相似文献   

16.
The crystal structure of a prospective olefin catalyst, namely {2‐[1‐acetyl‐5‐(2‐hydroxy­phenyl)‐4‐phenyl‐1,2,4‐di­aza­phospholan‐3‐yl]­phenyl acetate‐κP}chloro­(η4‐cyclo­octa‐1,5‐diene)rhodium(I) di­chloro­methane solvate, [RhCl(C8H12)(C24H23N2O4P)]·CH2Cl2, has been determined at 173 K. The five‐membered heterocycle of the phosphine ligand is in a slightly distorted twist conformation. An intramolecular N1—H1⃛Cl1 hydrogen bond contributes to the adopted conformation and may additionally participate in secondary interactions with substrates during catalysis.  相似文献   

17.
A novel method for the preparation of chromogenic calixarenes with azo groups was reported.p-Substituted(-NO2,-CH3,-Cl)amilines were diazotized with isoamyl nitrite in EtONa/EtOH under refluxing condition.Fifteen mono-,bis-,tris-and tetrakis(p-substituted phenyl)azo calix[4]arenes (including proximal and distal isomers) were obtainged respectively by diazo-coupling in different molar ratio to calix[4]arenes(1) under pH=7.5-9.0 in non-aqueous solution at 0-5℃.^1H NMR and ^13C NMR spectra of (p-substtituted phenyl)azo calix[4]-arenes indicated that they existed in cone conformation in solution.  相似文献   

18.
设计制备了两个新的配合物[Fe(dpq)(Mepy)2(NCS)2](1)和[Fe(Medpq)(Mepy)2 (NCS)2](2)。室温下X衍射结果表明配合物(2)为正交晶系,晶胞参数为a = 15.057(3) Å, b = 14.569(3) Å, c = 13.180(3) Å, a = 90.00°, b=90.00°, g = 90.00°。[FeN6] 变型八面体构型中,两个NCS-与其顺式配位,其余四个氮分别来自Medpq和两个Mepy。变温磁化率和穆斯堡尔谱学的研究表明配合物(1)(2)存在自旋交叉,配合物(1)的自旋转换温度为 T1/2 =340K,而配合物(2)在低温条件下的转换是不完全的。  相似文献   

19.
Nucleophilic incorporation of [18F]F? under aqueous conditions holds several advantages in radiopharmaceutical development, especially with the advent of complex biological pharmacophores. Sulfonyl fluorides can be prepared in water at room temperature, yet they have not been assayed as a potential means to 18F‐labelled biomarkers for PET chemistry. We developed a general route to prepare bifunctional 4‐formyl‐, 3‐formyl‐, 4‐maleimido‐ and 4‐oxylalkynl‐arylsulfonyl [18F]fluorides from their sulfonyl chloride analogues in 1:1 mixtures of acetonitrile, THF, or tBuOH and Cs[18F]F/Cs2CO3(aq.) in a reaction time of 15 min at room temperature. With the exception of 4‐N‐maleimide‐benzenesulfonyl fluoride ( 3 ), pyridine could be used to simplify radiotracer purification by selectively degrading the precursor without significantly affecting observed yields. The addition of pyridine at the start of [18F]fluorination (1:1:0.8 tBuOH/Cs2CO3(aq.)/pyridine) did not negatively affect yields of 3‐formyl‐2,4,6‐trimethylbenzenesulfonyl [18F]fluoride ( 2 ) and dramatically improved the yields of 4‐(prop‐2‐ynyloxy)benzenesulfonyl [18F]fluoride ( 4 ). The N‐arylsulfonyl‐4‐dimethylaminopyridinium derivative of 4 ( 14 ) can be prepared and incorporates 18F efficiently in solutions of 100 % aqueous Cs2CO3 (10 mg mL?1). As proof‐of‐principle, [18F] 2 was synthesised in a preparative fashion [88(±8) % decay corrected (n=6) from start‐of‐synthesis] and used to radioactively label an oxyamino‐modified bombesin(6–14) analogue [35(±6) % decay corrected (n=4) from start‐of‐synthesis]. Total preparation time was 105–109 min from start‐of‐synthesis. Although the 18F‐peptide exhibited evidence of proteolytic defluorination and modification, our study is the first step in developing an aqueous, room temperature 18F labelling strategy.  相似文献   

20.
We describe the reaction of anion [RhCl6]3− with a series of hydantoin ligands (HL1, HL2 and HL3 = 5‐methyl‐5‐(2‐, 3‐ and 4‐pyridyl)‐2,4‐imidazolidenedione, respectively). Based on spectroscopic, cyclic voltammetric, elemental and MS analyses, the complexes have the general formula K[RhCl2(L1)2] ( 1 ), cis ‐ and trans ‐K[RhCl4(HL2)2] ( 2a and 2b ) and cis ‐ and trans ‐K[RhCl4(HL3)2] ( 3a and 3b ). Complexes 2a , 2b , 3a and 3b were characterized successfully using infrared, 1H NMR and 13C NMR spectral analyses. Dissolution of complex 1 in dimethylsulfoxide (DMSO) led to elimination of one KL1 ligand and coordination of two DMSO molecules as ligands and transformation of this complex to cis ‐ and trans ‐[RhCl2L1(DMSO)2] ( 1a and 1b ). Recrystallization led to separation and isolation of crystals of 1a from the initial mixture. X‐ray analysis results showed that this complex was crystallized as solvated complex cis ‐[RhCl2L1(DMSO)2]DMSO. The catalytic activity of these complexes was then evaluated for the hydrogenation of various ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号