首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The formation of the RUNX1-RUNX1T1 fusion protein, resulting from the t(8;21) translocation, is considered to be one of the initiating events of t(8;21) acute myeloid leukemia (AML). However, the mechanisms of the oncogenic mechanism of RUNX1-RUNX1T1 remain unclear. In this study, we found that RUNX1-RUNX1T1 triggers the heterochromatic silencing of UBXN8 by recognizing the RUNX1-binding sites and recruiting chromatin-remodeling enzymes to the UBXN8 promoter region. Decitabine, a specific inhibitor of DNA methylation, upregulated the expression of UBXN8 in RUNX1-RUNX1T1+ AML cell lines. Overexpression of UBXN8 inhibited the proliferation and colony-forming ability of and promoted cell cycle arrest in t(8;21) AML cell lines. Enhancing UBXN8 levels can significantly inhibit tumor proliferation and promote the differentiation of RUNX1-RUNX1T1+ cells in vivo. In conclusion, our results indicated that epigenetic silencing of UBXN8 via methylation of its promoter region mediated by the RUNX1-RUNX1T1 fusion protein contributes to the leukemogenesis of t(8;21) AML and that UBXN8 targeting may be a potential therapeutic strategy for t(8;21) AML.Subject terms: Acute myeloid leukaemia, Tumour heterogeneity  相似文献   

2.
By assuming that HO.2 radical production in water and H2 production in benzene are 2 hit processes, and applying the concepts of track physics, we are able to obtain a parameteric fit to the yields of these reactions by heavy ion radiolysis from knowledge of the radial dose distribution about a heavy ion's path. We make no use of the concept of a track core, for no clearly definable track core appears in our calculations of the radial dose distribution. Instead we calculate an action cross section σ from the assumed 2 hit response to γ-rays. The cross section is calculated from two fitted parameters, E0, the γ-ray dose at which there is an average of 1 hit per target, and the target radius a0. From the cross section, the target radius and the stopping power we calculate the G value. While our model is not mechanistic, the assumed 2 hit process is consistent with hypotheses which have been offered as chemical models for these processes. Since a 2 hit process is more likely to take place in a high dose region, close to an ion's path, it may easily be attributed to a hypothetical track core in energy deposition, when indeed the response is a property of the detector.  相似文献   

3.
Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells, and treatment for AML is lengthy and can be very expensive. Medicinal plants and their bioactive molecules are potential candidates for improving human health. In this work, we studied the effect of Ptychotis verticillata (PV) essential oil and its derivatives, carvacrol and thymol, in AML cell lines. We demonstrated that a combination of carvacrol and thymol induced tumor cell death with low toxicity on normal cells. Mechanistically, we highlighted that different molecular pathways, including apoptosis, oxidative, reticular stress, autophagy, and necrosis, are implicated in this potential synergistic effect. Using quantitative RT-PCR, Western blotting, and apoptosis inhibitors, we showed that cell death induced by the carvacrol and thymol combination is caspase-dependent in the HL60 cell line and caspase-independent in the other cell lines tested. Further investigations should focus on improving the manufacturing of these compounds and understanding their anti-tumoral mechanisms of action. These efforts will lead to an increase in the efficiency of the oncotherapy strategy regarding AML.  相似文献   

4.
Multidrug resistance (MDR) is one of the serious problems in cancer research that causes failure in chemotherapy. Chromene-based compounds have been proven to be the novel anti-MDR agents for inhibiting proliferation of tumor cells through tubulin polymerization inhibition of by binding at the colchicine binding site. In this study, we screened a chromene-based database of small molecules using physicochemical, ADMET properties and molecular docking to identify potential hit compounds. In order to validate our hit compounds, molecular dynamics simulations and related analysis were carried out and the results suggest that our hit compounds (PubChem CIDs: 16814409, 17594471, 57367244 and 69899719) can prove to be potential inhibitors of tubulin. The in silico results show that the present hits, like colchicine, effectively suppressed the dynamic instability of microtubules and induced microtubule-depolymerization and cell cycle arrest.  相似文献   

5.
In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds’ binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.  相似文献   

6.
The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure–activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 μm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.  相似文献   

7.
O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-β-N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT.  相似文献   

8.
Identification of hit compounds against specific target form the starting point for a drug discovery program. A consistent decline of new chemical entities (NCEs) in recent years prompted a challenge to explore newer approaches to discover potential hit compounds that in turn can be converted into leads, and ultimately drug with desired therapeutic efficacy. The vast amount of omics and activity data available in public databases offers an opportunity to identify novel targets and their potential inhibitors. State of the art in silico methods viz., clustering of compounds, virtual screening, molecular docking, MD simulations and MMPBSA calculations were employed in a pipeline to identify potential ‘hits’ against those targets as well whose structures, as of now, could only predict through threading approaches. In the present work, we have started from scratch, amino acid sequence of target and compounds retrieved from PubChem compound database, modeled it in such a way that led to the identification of possible inhibitors of Dam1 complex subunit Ask1 of Candida albicans. We also propose a ligand based binding site determination approach. We have identified potential inhibitors of Ask1 subunit of a Dam1 complex of C. albicans, which is required to prevent precocious spindle elongation in pre-mitotic phases. The proposed scheme may aid to find virtually potential inhibitors of other unique targets against candida.  相似文献   

9.
Phosphodiesterase 2 (PDE2) has been regarded as a novel target for the treatment of Alzheimer’s disease (AD). In this study, we obtained (R)-LZ77 as a hit compound with moderate PDE2 inhibitory activity (IC50 = 261.3 nM) using a high-throughput virtual screening method based on molecular dynamics. Then, we designed and synthesized 28 dihydropyranopyrazole derivatives as PDE2 inhibitors. Among them, compound (+)-11h was the most potent PDE2 inhibitor, with an IC50 value of 41.5 nM. The molecular docking of PDE2-(+)-11h reveals that the 4-(trifluoromethyl)benzyl)oxyl side chain of the compound enters the H-pocket and forms strong hydrophobic interactions with L770/L809/F862, which improves inhibitory activity. The above results may provide insight for further structural optimization of highly potent PDE2 inhibitors and may lay the foundation for their use in the treatment of AD.  相似文献   

10.
Dysregulated and reprogrammed metabolism are one of the most important characteristics of cancer, and exploiting cancer cell metabolism can aid in understanding the diverse clinical outcomes for patients. To investigate the differences in metabolic pathways among patients with acute myeloid leukemia (AML) and differential survival outcomes, we systematically conducted microarray data analysis of the metabolic gene expression profiles from 384 patients available from the Gene Expression Omnibus and Cancer Genome Atlas databases. Pathway enrichment analysis of differentially expressed genes (DEGs) showed that the metabolic differences between low-risk and high-risk patients mainly existed in two pathways: biosynthesis of unsaturated fatty acids and oxidative phosphorylation. Using the gene-pathway bipartite network, 62 metabolic genes were identified from 272 DEGs involved in 88 metabolic pathways. Based on the expression patterns of the 62 genes, patients with shorter overall survival (OS) durations in the training set (hazard ratio (HR) = 1.58, p = 0.038) and in two test sets (HR = 1.69 and 1.56 and p = 0.089 and 0.029, respectively) were well discriminated by hierarchical clustering analysis. Notably, the expression profiles of ALAS2, BCAT1, BLVRB, and HK3 showed distinct differences between the low-risk and high-risk patients. In addition, models for predicting the OS outcome of AML from the 62 gene signatures achieved improved performance compared with previous studies. In conclusion, our findings reveal significant differences in metabolic processes of patients with AML with diverse survival durations and provide valuable information for clinical translation.  相似文献   

11.
12.
Fragment-based drug discovery is a valuable tool in hit identification, as well as the combination of different small fragments showing a minimal binding activity against biological receptors or enzymes to give merged hits. A high number of fragments on the same scaffold improve the probability to find a candidate showing single- or multi-target affinities. A rapid and versatile approach for synthesizing libraries of densely fragment-functionalized scaffolds is reported. Many fragments were assembled in few steps around a triazole ring starting from amino alcohols and other readily available building blocks. A binding assay against integrin αvβ3 was used as a test-bed in order to demonstrate the potential of such an approach in hit discovery strategies.  相似文献   

13.
DPY19L3 has been identified as a C-mannosyltransferase for thrombospondin type-1 repeat domain-containing proteins. In this study, we focused on the role of DPY19L3 in the myogenic differentiation of C2C12 mouse myoblast cells. We carried out DPY19L3 gene depletion using the CRISPR/Cas9 system. The result showed that these DPY19L3-knockout cells could not be induced for differentiation. Moreover, the phosphorylation levels of MEK/ERK and p70S6K were suppressed in the DPY19L3-knockout cells compared with that of parent cells, suggesting that the protein(s) that is(are) DPY19L3-mediated C-mannosylated and regulate(s) MEK/ERK or p70S6K signaling is(are) required for the differentiation.  相似文献   

14.
Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca2+. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs.  相似文献   

15.
A reaction-economic combinatorial strategy is described for lead hit identification in catalyst discovery efforts directed towards a specific transformation. Complex mixtures of rationally chosen precatalysts and ligands are screened against various reaction parameters to identify lead conditions in a small number of reactions. Iterative deconvolution of the resulting hits identifies which components contribute to the lead in situ generated catalyst. Application of this strategy rapidly uncovered a new mild in situ generated catalyst for the dehydrative Friedel–Crafts reaction as well as conditions for selective monoarylation in catalytic ortho-C–H arylation of unsubstituted N-(quinolin-8-yl)benzamide.  相似文献   

16.
Brown adipose tissue is specialized to burn lipids for thermogenesis and energy expenditure. Second-generation antipsychotics (SGA) are the most commonly used drugs for schizophrenia with several advantages over first-line drugs, however, it can cause clinically-significant weight gain. To reveal the involvement of brown adipocytes in SGA-induced weight gain, we compared the effect of clozapine, quetiapine, and ziprasidone, SGA with different propensities to induce weight gain, on the differentiation and the expression of brown fat-specific markers, lipogenic genes and adipokines in a mouse brown preadipocyte cell line. On Oil Red-O staining, the differentiation was inhibited almost completely by clozapine (40 µM) and partially by quetiapine (30 µM). Clozapine significantly down-regulated the brown adipogenesis markers PRDM16, C/EBPβ, PPARγ2, UCP-1, PGC-1α, and Cidea in dose- and time-dependent manners, whereas quetiapine suppressed PRDM16, PPARγ2, and UCP-1 much weakly than clozapine. Clozapine also significantly inhibited the mRNA expressions of lipogenic genes ACC, SCD1, GLUT4, aP2, and CD36 as well as adipokines such as resistin, leptin, and adiponectin. In contrast, quetiapine suppressed only resistin and leptin but not those of lipogenic genes and adiponectin. Ziprasidone (10 µM) did not alter the differentiation as well as the gene expression patterns. Our results suggest for the first time that the inhibition of brown adipogenesis may be a possible mechanism to explain weight gain induced by clozapine and quetiapine.  相似文献   

17.
Phytophthora is a genus of microorganisms that cause devastating dieback and root-rot diseases in thousands of plant hosts worldwide. The economic impact of Phytophthora diseases on crops and native ecosystems is estimated to be billions of dollars per annum. These invasive pathogens are extremely difficult to control using existing chemical means, and the effectiveness of the few treatments available is being jeopardized by increasing rates of resistance. There is an urgent need to identify new chemical treatments that are effective against Phytophthora diseases. Natural products have long been regarded as “Nature’s medicine chest”, providing invaluable leads for developing front-line drugs and agrochemical agents. Here, we have screened a natural product-inspired library of 328 chemicals against two key Phytophthora species: Phytophthora cinnamomi and Phytophthora agathidicida. The library was initially screened for inhibition of zoospore germination. From these screens, we identified twenty-one hits that inhibited germination of one or both species. These hits were further tested in mycelial growth inhibition studies to determine their half-maximal inhibitory concentrations (IC50s). Four compounds had IC50 values of approximately 10 µM or less, and our best hit had IC50s of approximately 3 µM against both Phytophthora species tested. Overall, these hits may serve as promising leads for the development of new anti-Phytophthora agrochemicals  相似文献   

18.
This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.  相似文献   

19.
Pterostilbene is a dimethyl ether derivative of resveratrol, less metabolized than its analogue, due to the substitution of two hydroxyl groups with methoxyl groups. Nevertheless, the amounts of pterostilbene phase II metabolites found in plasma and tissues are higher than those of the parent compound. The first aim of this study was to assess whether pterostilbene-4′-O-glucuronide (PT-G) and pterostilbene-4′-O-sulfate (PT-S) were able to prevent triglyceride accumulation in AML12 (alpha mouse liver 12) hepatocytes. This being the case, we aimed to analyze the mechanisms involved in their effects. For this purpose, an in vitro model mimicking the hepatocyte situation in fatty liver was developed by incubating mouse AML12 hepatocytes with palmitic acid (PA). For cell treatments, hepatocytes were incubated with 1, 10 or 25 µM of pterostilbene, pterostilbene-4′-O-glucuronide or pterostilbene-4′-O-sulfate for 18 h. Triglycerides and cell viability were assessed by a commercial kit and crystal violet assay, respectively. Protein expression of enzymes and transporters involved in triglyceride metabolism was analyzed by immunoblot. The results showed for the first time the anti-steatotic effect of pterostilbene metabolites and thus, that they contribute to the preventive effect induced by pterostilbene on steatosis in in vivo models. This anti-steatotic effect is mainly due to the inhibition of de novo lipogenesis.  相似文献   

20.
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号