首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
掺杂WO3的SiO2/TiO2的溶胶热液合成及光催化性能   总被引:1,自引:0,他引:1  
采用溶胶-热液合成法制备了掺杂WO3的SiO2/TiO2复合光催化剂,用X射线衍射、红外光谱、Zeta电位分析、BET和透射电镜对样品进行了表征,并以甲基橙降解评价了其光催化性能.结果表明:改性后的光催化剂表现出较高的光催化性能,WO3和SiO2不仅增加了锐钛矿TiO2的稳定性,并阻止了TiO2晶粒的聚集生长.  相似文献   

2.
 用溶胶-凝胶法在表面包覆了SiO2的磁基体Fe3O4上负载TiO2,从而得到了易于磁性固液分离的磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂,并通过IR,XRD,SEM和XPS等测试手段对催化剂进行了表征.研究了磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂对亚甲基蓝溶液脱色的性能,并考察了WO3掺杂量对样品催化活性的影响.结果表明,n(WO3)/n(TiO2)=0.001时,磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂的催化活性最高,循环使用3次时脱色率仍保持在98%.  相似文献   

3.
In this study, palladium nanoparticles loaded graphdiyne oxide (Pd/GDYO) nanocomposite were fabricated by in-situ reduction of palladium chloride in the dispersion of GDYO, and characte-rized by Raman spectra, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The synthesized Pd/GDYO was first found to have catalytic activities similar to those of the peroxidase enzyme, which can catalyze the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine(TMB) in the presence of hydrogen peroxide(H2O2). Steady-state kinetic studies showed that the catalytic reaction of Pd/GDYO follows a ping-pong mechanism, and Pd/GDYO has a stronger activity to TMB with a Michaelis constant(Km) value of 5.32×10-4 mmol/L. Based on the shielding effect of glutathione(GSH) on the Pd/GDYO-H2O2-TMB reaction system, a colorimetric detection method for GSH was deve-loped with a wide linear range from 0.1 μmol/L to 40 μmol/L and a limit of detection of 0.1 μmol/L. The method was successfully applied for fast and accurate detection of GSH in injection powder drugs. It was expected that this peroxidase-like Pd/GDYO nano- composite would have wide applications in the fields of biomedicine and environmental chemistry.  相似文献   

4.
Herein, for the first time, a direct Z‐scheme g‐C3N4/NiFe2O4 nanocomposite photocatalyst was prepared using facile one‐pot hydrothermal method and characterized using XRD, FT‐IR, DRS, PL, SEM, EDS, TEM, HRTEM, XPS, BET and VSM characterized techniques. The result reveals that the NiFe2O4 nanoparticles are loaded on the g‐C3N4 sheets successfully. The photocatalytic activities of the as‐prepared photocatalysts were evaluated for the degradation of methyl orange (MO) under visible light irradiation. It was shown that the photocatalytic activity of the g‐C3N4/NiFe2O4 nanocomposite is about 4.4 and 3 times higher than those of the pristine NiFe2O4 and g‐C3N4 respectively. The enhanced photocatalytic activity could be ascribed to the formation of g‐C3N4/NiFe2O4 direct Z‐scheme photocatalyst, which results in efficient space separation of photogenerated charge carriers. More importantly, the as‐prepared Z‐scheme photocatalyst can be recoverable easily from the solution by an external magnetic field and it shows almost the same activity for three consecutive cycles. Considering the simplicity of preparation method, this work will provide new insights into the design of high‐performance magnetic Z‐scheme photocatalysts for organic contaminate removal.  相似文献   

5.
The development of conjugated polymer-based nanocomposites by adding metallic particles into the polymerization medium allows the proposition of novel materials presenting improved electrical and optical properties. Polyaniline Emeraldine-salt form (ES–PANI) has been extensively studied due to its controllable electrical conductivity and oxidation states. On the other hand, tungsten oxide (WO3) and its di-hydrated phases, such as WO3·2H2O, have been reported as important materials in photocatalysis and sensors. Herein, the WO3·2H2O phase was directly obtained during the in-situ polymerization of aniline hydrochloride from metallic tungsten (W), allowing the formation of hybrid nanocomposites based on its full oxidation into WO3·2H2O. The developed ES–PANI–WO3·2H2O nanocomposites were successfully characterized using experimental techniques combined with Density Functional Theory (DFT). The formation of WO3·2H2O was clearly verified after two hours of synthesis (PW2 nanocomposite), allowing the confirmation of purely physical interaction between matrix and reinforcement. As a result, increased electrical conductivity was verified in the PW2 nanocomposite: the DFT calculations revealed a charge transfer from the p-orbitals of the polymeric phase to the d-orbitals of the oxide phase, resulting in higher conductivity when compared to the pure ES–PANI.  相似文献   

6.
Nanocrystalline Fe2O3 powder was synthesized by a simple chemical route involving FeCl3 and NaOH. The Fe2O3 powder thus prepared was characterized using x-ray diffraction study, scanning electron microscopy, and Fourier transform infrared spectroscopy. The adsorption properties of crystalline Fe2O3 powder have been investigated with an aim to explore a possible low cost and efficient way to remove Congo red (CR) from waste water. Fe2O3 powder was found as an excellent adsorbent for CR from aqueous medium. Adsorption capacity as much as 203.66 mg g?1 is reported at room temperature. Effect of different experimental parameters such as reaction pH, initial CR dye concentration, adsorbent dose, and reaction temperature were studied on adsorption capacity of Fe2O3 powder and modeled by artificial neural network (ANN). Optimal ANN structure (4–5–1) shows minimum mean squared error (MSE) of 0.00235 and determination coefficient (R2) of 0.991 with Levenberg–Marquardt algorithm. Isotherm analysis of experimental data exhibited better fit to the Langmuir isotherm. The adsorption process was found to follow second-order kinetics as depicted by the analysis of experimental results. Thermodynamic study shows that the adsorption process is endothermic, spontaneous, and thermodynamically favorable in the temperature range of 27°C to 60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号