首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm ). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm , but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers.  相似文献   

2.
为拓宽多重响应性凝胶在生物医学领域中的应用,本文基于生物大分子构筑具有pH响应、糖响应性的可自修复性水凝胶。 本文选用3-氨基苯硼酸(APBA)和2,3-环氧丙基三甲基氯化铵(CHGTA)分别对聚谷氨酸(γ-PGA)和瓜尔胶(GG)进行改性制备了聚谷氨酸-g-氨基苯硼酸(γ-PGA-g-APBA)和阳离子瓜尔胶,在此基础上,对γ-PGA-g-APBA和阳离子瓜尔胶进行物理共混制备生物基凝胶。 通过傅里叶变换红外光谱仪(FTIR)、核磁共振波谱仪(1H NMR)和流变仪对聚合物化学结构、接枝率、流变性能和力学性能进行表征,并考察了凝胶在不同pH值及糖浓度下刺激响应性。 结果表明,凝胶具有自修复性,修复效率可达100%;具有pH响应性,在环境pH值较高时更易形成凝胶,且凝胶强度随pH值升高而增大;同时所制凝胶具有糖响应性,在4 g/L的葡萄糖溶液中浸泡后即可导致凝胶解体。 这些结果说明功能基团APBA的引入可赋予凝胶多重响应性。 所制的双重响应性生物基凝胶具有良好的生物相容性,有望应用于生物医学、功能器件、传感等领域。  相似文献   

3.
4.
Supramolecular polymers from the bolaamphiphilic L ‐histidine ( BolaHis ) and benzene dicarboxylic acids (o‐phthalic acid, OPA ; isophthalic acid, IPA and terephthalic acid, TPA ) were found to form hydrogels although neither of the single components could gel water. It was suggested that the hydrogen bond and ionic interactions among different imidazole and carboxylic acid groups are responsible for the formation of the supramolecular polymer as well as the hydrogel formation. Depending on the structures of the dicarboxylic acids, different behaviors of the gels were observed. The hydrogels from OPA / BolaHis and IPA / BolaHis showed thixotropic properties, that is, the hydrogel was destroyed by hand shaking and then slowly gelated again at room temperature. However, the hydrogels of TPA / BolaHis could not. Interestingly, when EuIII was doped into IPA / BolaHis supramolecular polymers, very strong luminescence enhancement was observed. FT‐IR spectroscopies and XRD analysis revealed that the strong luminescence enhancement could be attributed to the matched supramolecular nanostructures, which render the correct binding and a good dispersion of EuIII ions. The work offers a new approach for fabricating functional hydrogels through the supramolecular polymers.  相似文献   

5.
《化学:亚洲杂志》2018,13(15):1962-1971
Recently, supramolecular hydrogels have attracted increasing interest owing to their tunable stability and inherent biocompatibility. However, only few studies have been reported in the literature on self‐healing supramolecular nucleoside hydrogels, compared to self‐healing polymer hydrogels. In this work, we successfully developed a self‐healing supramolecular nucleoside hydrogel obtained by simply mixing equimolar amounts of guanosine (G) and isoguanosine (isoG) in the presence of K+. The gelation properties have been studied systematically by comparing different alkali metal ions as well as mixtures with different ratios of G and isoG. To this end, rheological and phase diagram experiments demonstrated that the co‐gel not only possessed good self‐healing properties and short recovery time (only 20 seconds) but also could be formed at very low concentrations of K+. Furthermore, nuclear magnetic resonance (NMR), powder X‐ray diffraction (PXRD), and circular dichroism (CD) spectroscopy suggested that possible G2isoG2‐quartet structures occurred in this self‐healing supramolecular nucleoside hydrogel. This co‐gel, to some extent, addressed the problem of isoguanosine gels for the applications in vivo, which showed the potential to be a new type of drug delivery system for biomedical applications in the future.  相似文献   

6.
Enzyme‐responsive hydrogels have great potential in applications of controlled drug release, tissue engineering, etc. In this study, we reported on a supramolecular hydrogel that showed responses to two enzymes, phosphatase which was used to form the hydrogels and esterase which could trigger gel‐sol phase transitions. The gelation process and visco‐elasticity property of the resulting gel, morphology of the nanostructures in hydrogel, and peptide conformation in the self‐assembled nanostructure were characterized by rheology, transmission electron microscope (TEM), and circular dichroism (CD), respectively. Potential application of the enzyme‐responsive hydrogel in drug release was also demonstrated in this study. Though only one potential application of drug release was proved in this study, the responsive hydrogel system in this study might have potentials for the applications in fields of cell culture, controlled‐drug release, etc.  相似文献   

7.
Stimuli-responsive hydrogels have attracted attention as soft actuators that act similarly to muscles. In this work, hydrogel actuators controlled by host–guest interactions have been developed. The introduction of a 1:1 inclusion complex into a hydrogel is a popular design for achieving a change in cross-linking density. To realize faster and larger deformation properties, the introduction of a 1:2 inclusion complex is effective because the alteration in cross-linking density in a hydrogel with 1:2 complexes is larger than that in a hydrogel with 1:1 complexes. A redox-responsive hydrogel actuator cross-linked with 1:2 inclusion complexes is designed, where γ-cyclodextrin (γCD) and viologens modified with an alkyl chain derivative (VC11) were employed as the host and guest units, respectively. γCD includes two VC11 molecules in its cavity. The obtained γCD–VC11 hydrogel cross-linked with the 1:2 complex showed faster and larger deformation behaviour than the αCD–VC11 and the βCD–VC11 hydrogels cross-linked with a 1:1 complex. The deformation ratio and response speed of the γCD–VC11 hydrogel, which forms a supramolecular cross-linking structure by stimuli, are 3 and 11 times larger, respectively, than those of our previous hydrogel consisting of a βCD/ferrocene 1:1 inclusion complex.

A hydrogel actuator with a 1:2 host–guest complex controlled by redox stimuli has been developed to realize faster and larger deformation.  相似文献   

8.
Electrostatic interaction between protein and polysaccharides could influence structured liquid oil stability when emulsification is used for this purpose. The objective of this work was to structure sunflower oil forming emulsions and High Internal Phase Emulsions (HIPEs) using pea protein (PP) and xanthan gum (XG) as a stabilizer, promoting or not their electrostatic attraction. The 60/40 oil-in-water emulsions were made varying the pH (3, 5, and 7) and PP:XG ratio (4:1, 8:1, and 12:1). To form HIPEs, samples were oven-dried and homogenized. The higher the pH, the smaller the droplet size (Emulsions: 15.60–43.96 µm and HIPEs: 8.74–20.38 µm) and the oil release after 9 weeks of storage at 5 °C and 25 °C (oil loss < 8%). All systems had weak gel-like behavior, however, the values of viscoelastic properties (G′ and G″) increased with the increment of PP:XG ratio. Stable emulsions were obtained at pHs 5 and 7 in all PP:XG ratios, and at pH 3 in the ratio 4:1. Stable HIPEs were obtained at pH 7 in the ratios PP:XG 4:1, 8:1, and 12:1, and at pH 5 at PP:XG ratio 4:1. All these systems presented different characteristics that could be exploited for their application as fat substitutes.  相似文献   

9.
New methods for the preparation of reversible pH-responsive DNA hydrogels based on Hoogsteen triplex structures are described. One system consists of a hydrogel composed of duplex DNA units that bridge acrylamide chains at pH = 7.4 and undergoes dissolution at pH = 5.0 through the reconfiguration of one of the duplex bridging units into a protonated CG·C+ triplex structure. The second system consists of a hydrogel consisting of acrylamide chains crosslinked in the presence of an auxiliary strand by Hoogsteen TA·T triplex interaction at pH = 7.0. The hydrogel transforms into a liquid phase at pH = 10.0 due to the separation of the triplex bridging units. The two hydrogel systems undergo reversible and cyclic hydrogel/solution transitions by subjecting the systems to appropriate pH values. The anti-cancer drug, coralyne, binds specifically to the TA·T triplex-crosslinked hydrogel thereby increasing its stiffness. The pH-controlled release of the coralyne from the hydrogel is demonstrated.  相似文献   

10.
In the presence of a small amount of a proteinous amino acid (arginine/tryptophan/histidine) or a nucleoside (adenosine/guanosine/cytidine), graphene oxide (GO) forms supramolecular stable hydrogels. These hydrogels have been characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) analysis, Raman spectroscopy, and rheology. The morphology of the hydrogel reveals the presence of nanofibers and nanosheets. This suggests the supramolecular aggregation of GO in the presence of an amino acid/nucleoside. Rheological studies of arginine containing a GO-based hydrogel show a very high G' value (6.058 × 10(4) Pa), indicating the rigid, solid-like behavior of this gel. One of these hydrogels (GO-tryptophan) has been successfully utilized for the in situ synthesis and stabilization of Au nanoparticles (Au NPs) within the hydrogel matrix without the presence of any other external reducing and stabilizing agents to make Au NPs containing the GO-based nanohybrid material. The Au NPs containing the hybrid hydrogel has been characterized by using UV/vis spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In this study, gold salt (Au(3+)) has been bioreduced by the tryptophan within the hydrogel. This is a facile "green chemical" method of preparing the GO-based nanohybrid material within the hydrogel matrix. The significance of this method is the in situ reduction of gold salt within the gel phase, and this helps to decorate the nascently formed Au NPs almost homogeneously and uniformly on the surface of the GO nanosheets within the gel matrix.  相似文献   

11.
A surfactant, R‐6‐AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low‐molecular‐weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm ). R‐6‐AO not only stabilizes oil‐in‐water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm , but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo‐TEM images reveal that R‐6‐AO molecules self‐assemble into left‐handed helical fibers with cross‐sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R‐6‐AO can be prepared with different oils (n‐dodecane, n‐decane, n‐octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers.  相似文献   

12.
Carrageenan is an anionic sulfated polysaccharide that accounts for a high content of red seaweed Eucheuma gelatinae. This paper focused on the extraction, optimization, and evaluation of antioxidant activity, rheology characteristics, and physic-chemistry characterization of β-carrageenan from Eucheuma gelatinae. The extraction and the optimization of β-carrageenan were by the maceration-stirred method and the experimental model of Box-Behken. Antioxidant activity was evaluated to be the total antioxidant activity and reducing power activity. The rheology characteristics of carrageenan were measured to be gel strength and viscosity. Physic-chemistry characterization was determined, including the molecular weight, sugar composition, function groups, and crystal structure, through GCP, GC-FID, FTIR, and XRD. The results showed that carrageenan possessed antioxidant activity, had intrinsic viscosity and gel strength, corresponding to 263.02 cps and 487.5 g/cm2, respectively. Antioxidant carrageenan is composed of rhamnose, mannose, glucose, fucose, and xylose, with two molecular weight fractions of 2.635 × 106 and 2.58 × 106 g/mol, respectively. Antioxidant carrageenan did not exist in the crystal. The optimization condition of antioxidant carrageenan extraction was done at 82.35 °C for 115.35 min with a solvent-to-algae ratio of 36.42 (v/w). At the optimization condition, the extraction efficiency of carrageenan was predicted to be 87.56 ± 5.61 (%), the total antioxidant activity and reducing power activity were predicted to 71.95 ± 5.32 (mg ascorbic acid equivalent/g DW) and 89.84 ± 5.84 (mg FeSO4 equivalent/g DW), respectively. Purity carrageenan content got the highest value at 42.68 ± 2.37 (%, DW). Antioxidant carrageenan from Eucheuma gelatinae is of potential use in food and pharmaceuticals.  相似文献   

13.
Manipulation of non-covalent metal–metal interactions allows the fabrication of functional metallosupramolecular structures with diverse supramolecular behaviors. The majority of reported studies are mostly designed and governed by thermodynamics, with very few examples of metallosupramolecular systems exhibiting intriguing kinetics. Here we report a serendipitous finding of platinum(ii) complexes serving as non-covalent crosslinkers for the fabrication of supramolecular DNA hydrogels. Upon mixing the alkynylplatinum(ii) terpyridine complex with double-stranded DNA in aqueous solution, the platinum(ii) complex molecules are found to first stack into columnar phases by metal–metal and π–π interactions, and then the columnar phases that carry multiple positive charges crosslink the negatively charged DNA strands to form supramolecular hydrogels with luminescence properties and excellent processability. Subsequent platinum(ii) intercalation into DNA competes with the metal–metal and π–π interactions at the crosslinking points, switching on the spontaneous gel-to-sol transition. In the case of a chloro (2,6-bis(benzimidazol-2′-yl)pyridine)platinum(ii) complex, with [Pt(bzimpy)Cl]+ serving as a non-covalent crosslinker where the metal–metal and π–π interactions outcompete platinum(ii) intercalation, the intercalation-driven gel-to-sol transition pathway is blocked since the gel state is energetically more favorable than the sol state. Interestingly, the ligand exchange reaction of the chloro ligand in [Pt(bzimpy)Cl]+ with glutathione (GSH) has endowed the complexes with enhanced hydrophilicity, decreasing the planarity of the complexes, and turning off the metal–metal and π–π interactions at the crosslinking points, leading to GSH-triggered hydrogel dissociation.

We report a serendipitous finding of platinum(ii) complexes serving as non-covalent crosslinkers for the fabrication of supramolecular DNA hydrogels.  相似文献   

14.
Enzyme‐catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. 31P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca2+ or Sr2+) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme‐instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.  相似文献   

15.
Masahiro Suzuki  Sanae Owa 《Tetrahedron》2007,63(31):7302-7308
We describe the simple preparation of new l-lysine derivatives with a gluconic or glucoheptonic group, their hydrogelation properties, and the thermal and mechanical properties of the supramolecular hydrogels. The l-lysine derivatives with a gluconic group have no hydrogelation ability, while the l-lysine-glucoheptonamide derivatives functioned as hydrogelators. Their hydrogelation abilities increased with the decreasing length of the spacer between the l-lysine segment and the glucoheptonic group. The compound, which has no spacer, formed a supramolecular hydrogel at 0.05 wt % in pure water. The thermal stability and high mechanical strength of the supramolecular hydrogels based on this compound significantly depended on the aqueous solutions. Electron microscopy and FTIR studies demonstrated that the hydrogelators created a three-dimensional network through hydrogen bonding and hydrophobic interactions in the supramolecular hydrogel. In addition, it was found that hydrophobic interactions played an important role in the thermal stability of the supramolecular hydrogel.  相似文献   

16.
The properties of milk protein-stabilised, oil-in-water emulsions are determined by the structure and surface rheology of the adsorbed layer at the oil-water interface. Analysis of the segment density profiles normal to the surface show differences in the structure between adsorbed layers of disordered casein and globular whey protein. Systematic studies of stability and rheology of model oil-in-water emulsion systems made with milk proteins as sole emulsifiers give insight into the relation between adsorbed layer properties and bulk emulsion stability. Of particular importance are effects of pH, temperature, calcium ions and protein content. Colloidal interactions between adsorbed layers on different surfaces can be inferred from an analysis of dynamic collisions of protein-coated emulsion droplets in shear flow using the colloidal particle scattering technique. The role of competitive adsorption on emulsion properties can be derived from experiments on systems containing mixtures of milk proteins and small-molecule surfactants. Shear-induced destabilisation is especially influenced by the presence of fat crystals in the emulsion droplets. Aggregated gel network properties are dependent on the balance of weak and strong interparticle interactions. In heat-set whey protein emulsion gels, the rheological behaviour is especially sensitive to surfactant type and concentration. Rearrangements of transient caseinate-based emulsion gels can have a profound influence on the quiesent stability behaviour. Computer simulation provides a general link between particle interactions, microstructure and rheological properties.  相似文献   

17.
The avocado peel is an agro-industrial by-product that has exhibited a massive increase in its production in the last few years. The reuse and valorisation of this by-product are essential since its disposal raises environmental concerns. In the present study, ethanolic extracts of avocado peels of the Hass variety were obtained, for three extraction times (1.5 h, 3 h and 4 h) and analysed for their antioxidant and antibacterial properties. Antioxidant evaluations of the extracts revealed that the extraction time of 1.5 h exhibited the best results amongst the three, with a DPPH inhibition percentage of 93.92 ± 1.29 and an IC50 percentage, the necessary concentration of the extract to inhibit 50% of DPPH, of 37.30 ± 1.00. The antibacterial capacity of the extracts was evaluated and it was revealed that they were able to inhibit the growth and development of bacteria of the Staphylococcus family. The obtained extract was incorporated in two types of cosmetic formulations (oil-in-water and water-in-oil) and their stability was evaluated and compared with formulations containing synthetic preservatives (BHT and phenoxyethanol). The results of the stability evaluation suggest that the avocado peel extract has the potential to be incorporated in both types of emulsions, acting as an antioxidant and antibacterial agent, proving it to be a viable option to reduce/replace the use of synthetic preservatives. Furthermore, the avocado peel extract proved to be more effective and stable in oil-in-water emulsions. These results highlight the possibility of obtaining sustainable cosmetics, significantly reducing the negative impacts on the environment by the incorporation of extracts sourced from the avocado peel, an interesting source of phenolic compounds, an abundant and low-cost by-product.  相似文献   

18.
Hydrogels that can respond to multiple external stimuli represent the next generation of advanced functional biomaterials. Here, a series of multimodal hydrogels were synthesized that can contract and expand reversibly over several cycles while changing their mechanical properties in response to blue and red light, as well as heat (∼50 °C). The light-responsive behavior was achieved through a photoredox-based mechanism consisting of photoinduced electron transfer from a zinc porphyrin photocatalyst in its excited state to oligoviologen-based macrocrosslinkers, both of which were integrated into the hydrogel polymer network during gel formation. Orthogonal thermoresponsive properties were also realized by introducing N-isopropyl acrylamide (NIPAM) monomer simultaneously with hydroxyethyl acrylate (HEA) in the pre-gel mixture to produce a statistical 60 : 40 HEA : NIPAM polymer network. The resultant hydrogel actuators – crosslinked with either a styrenated viologen dimer (2V4+-St) or hexamer (6V12+-St) – were exposed to red or blue light, or heat, for up to 5 h, and their rate of contraction, as well as the corresponding changes in their physical properties (i.e., stiffness, tensile strength, Young''s modulus, etc.), were measured. The combined application of blue light and heat to the 6V12+-St-based hydrogels was also demonstrated, resulting in hydrogels with more than two-fold faster contraction kinetics and dramatically enhanced mechanical robustness when fully contracted. We envision that the reported materials and the corresponding methods of remotely manipulating the dynamic hydrogels may serve as a useful blueprint for future adaptive materials used in biomedical applications.

Orthogonal modes of activation in thermoresponsive hydrogel actuators using porphyrin-based visible light photoredox catalysis, viologen-based crosslinkers, and poly(N-isopropylacrylamide).  相似文献   

19.
水凝胶具有良好的生物相容性和生物可降解性,其结构呈三维网状结构,与细胞外基质相似,在药物释放和组织工程等领域具有广阔的应用前景,被广泛地用于生物制药、生物材料和医学等领域。流变学可以描述材料的流动特性和力学性能,水凝胶的粘弹响应对材料内部结构的变化也非常敏感,因此流变行为被视为研究水凝胶的一种重要方法。本文综述了流变学方法在水凝胶研究中的应用,介绍了水凝胶流变学的研究方法,讨论了影响水凝胶流变学特征的因素,并展望了水凝胶流变学的发展前景。  相似文献   

20.
Hen egg yolk is a traditional ingredient used in a wide variety of food emulsions, especially fluid sauces. Industrial processing of these sauces generally involves heat treatments in order to pasteurise or sterilise them. These heat treatments may cause undesired gelation of the emulsion, because egg yolk proteins are particularly thermosensitive. Heat gelation of oil-in-water emulsions prepared with egg yolk may differ from that of egg yolk solutions, because of the influence of oil droplets on network formation. In this study, we investigated the influence of oil droplets on the gelation of oil-in-water emulsions made with yolk. We studied three pH values: 3.0, 5.0 and 7.0 with a constant NaCl concentration: 0.55 M. Oil droplet size was controlled after emulsification, gelation of solutions and emulsions was monitored in situ by coupling heating with recording viscoelastic properties, and transmission electron microscopy was conducted in heat-set emulsion gels. In an attempt to target the proteins that impose the kinetic of gelation of egg yolk, we repeated the experiment with plasma and granules, the main fractions of yolk. In situ rheology showed that, in our experimental conditions [especially oil volume fraction (0.3) and oil droplet size (d3.2=1 &mgr;m)], emulsions made with yolk and plasma have a similar gelation process with oil droplets acting as inactive fillers. Furthermore, transmission electron microscopy showed similar network characteristics between heated emulsions made with yolk and plasma. Moreover, we demonstrated that acidic conditions provided the fastest gelation of yolk solutions and emulsions. On the other hand, in emulsions prepared with granules, oil droplets behaved as active filler particles and reinforced the gel strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号