首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
JIANG  Feng  QU  Jinqing  CHEN  Huanqin 《中国化学》2009,27(10):2079-2084
Novel chiral methylpropargyl esters bearing azobenzene groups, namely, 4‐[4′‐(benzyloxy)phenylazophenyl]‐ carbonyl‐(S)‐1‐methylpropargyl ester ( e ), 4‐[4′‐(n‐butyloxy)phenylazophenyl]carbonyl‐(S)‐1‐methylpropargyl ester ( f ), 4‐[4′‐(n‐hexyloxy)phenylazophenyl]carbonyl‐(S)‐1‐methylpropargyl ester ( g ), and 4‐[4′‐(n‐octyloxy)phenylazo‐ phenyl]carbonyl‐(S)‐1‐methylpropargyl ester ( h ) were synthesized and polymerized with Rh+(nbd)[η6‐C6H5B?‐ (C6H5)3] (nbd=norbornadiene) catalyst to give the corresponding polymers with moderate molecular weights (Mn=8.4×103–15.7×103) in good yields (76%? –?91%). The structures of polymers were illustrated by IR and NMR spectroscopies. Polymers were soluble in comment organic solvents including toluene, CHCl3 CH2Cl2, THF, and DMSO, while insoluble in diethyl ether, n‐hexane and methanol. Large optical rotations of polymer solutions demonstrated that all the polymers take a helical structure with a predominantly one‐handed screw sense in organic solvents.  相似文献   

2.
Reactions of triorganotin chlorides with potassium salt of O-alkyl trithiophosphate [ROP(S)(SK)2; R = Me, Pri, Ph] in 2:1 molar ratio in anhydrous benzene yield triorganotin O-alkyl trithiophosphate of the type ROP(S) [SSnR′3]2 R = Me, Pri; Ph, R′ = Prn, Bun, Ph] which are found to be monomeric in nature. These complexes are soluble in common organic solvents. Similar reactions of diorganotin chloride with dipotassium salt of S-alkyl trithiophosphate yield diorganotin-S-alkyl trithiophosphate of the type [(RS)P(O)S2]2SnR′2; R = Me, Pri; R′ = Me, Et, Ph, which also are found to be monomeric in nature and are soluble in common organic solvents. The newly synthesized derivatives have been characterized by physicochemical and spectroscopic techniques, IR, NMR (1H, 31P, and 119Sn).  相似文献   

3.
Antipodal (`trans‐1') Diels‐Alder bis‐adducts 3 and 7 – 9 of [5,6]fullerene‐C60Ih ( 1 ) with some anthracenes were prepared highly regioselectively by heating mixtures of the solid 1 and anthracene or of (one of) three alkyl‐substituted anthracenes in the absence of solvents (Scheme 2). Other bis‐cycloadducts were not detected, but lesser amounts of mono‐cycloadducts 2 and 4 – 6 , respectively, were also formed. Heating of solvent‐free mixtures of 1 and three other alkyl‐substituted anthracenes did not result in a detectable amount of (antipodal) bis‐cycloadducts. The antipodal bis‐adduct 7 of 1 and of 1‐methylanthracene was analyzed by X‐ray crystallography. The preparative outcome of heating of anthracenes and solid 1 parallels the result of the heating of the corresponding crystalline mono‐adducts of anthracenes and 1 . Both approaches reveal a remarkably consistent dependence of the reaction upon the presence and position of alkyl substituents at the anthracene unit. The regioselective assembly of antipodal bis‐adducts from anthracene(s) and 1 cannot be rationalized by their (inherent molecular) stability, but it indicates the crucial control of the lattice.  相似文献   

4.
Chloride abstraction from the half‐sandwich complexes [RuCl2(η6p‐cymene)(P*‐κP)] ( 2a : P* = (Sa,R,R)‐ 1a = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐1‐phenylethyl)]phosphoramidite; 2b : P* = (Sa,R,R)‐ 1b = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐(1‐(1‐naphthalen‐1‐yl)ethyl]phosphoramidite) with (Et3O)[PF6] or Tl[PF6] gives the cationic, 18‐electron complexes dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐phenyl]ethyl}[(1R)‐1‐phenylethyl]phosphoramidite‐κP}ruthenium(II) hexafluorophosphate ( 3a ) and [Ru(S)]‐dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐naphthalen‐1‐yl]ethyl}[(1R)‐1‐(naphthalen‐1‐yl)ethyl]phosphoramidite‐κP)ruthenium(II) hexafluorophosphate ( 3b ), which feature the η2‐coordination of one aryl substituent of the phosphoramidite ligand, as indicated by 1H‐, 13C‐, and 31P‐NMR spectroscopy and confirmed by an X‐ray study of 3b . Additionally, the dissociation of p‐cymene from 2a and 3a gives dichloro{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐(1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP)ruthenium(II) ( 4a ) and di‐μ‐chlorobis{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP}diruthenium(II) bis(hexafluorophosphate) ( 5a ), respectively, in which one phenyl group of the N‐substituents is η6‐coordinated to the Ru‐center. Complexes 3a and 3b catalyze the asymmetric cyclopropanation of α‐methylstyrene with ethyl diazoacetate with up to 86 and 87% ee for the cis‐ and the trans‐isomers, respectively.  相似文献   

5.
The photoinduced processes leading to formation of J-aggregate stacks of 1-(β-methacryloxyethyl)-3,3-dimethyl-6′- nitrospiro-(indoline-2,2′-[2H-[2H-1] benzopyran) d its associated ring opened merocyanine form B have been determined by N2-laser transient spectroscopy. Detailed mechanisms for formation of complexes AB, A2B, and J-aggregate stacks (A2B) n in aliphatic and aromatic solvents are presented.  相似文献   

6.
We present an analysis of data on the intrinsic viscosity [η] of sulfo-polystyrene ionomers in several solvents for a variety of sulfonation levels and counterions. For solvents of low dielectric constant, 2 < ε < 18, [η] decreases from the base polymer value [η]0 with increasing substitution level. This behavior was attributed to intramolecular association of ionic dipoles. The ratio [η]/[η]0 was found to depend on a single reduced variable αAαSx, where x is the fractional substitution, αA depends only on the counterion, and αS ∝ ε?1 depends only on the solvent. For solvents of high dielectric constant, 36 < ε < 47, [η] increases approximately as x3, and counterion effects are small. This behavior was attributed to ionic dissociation, giving rise to a polyelectrolyte effect. Implications of the low ε results are discussed in relation to association-induced gelation behavior and possible generalizations of the reduced variables approach.  相似文献   

7.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

8.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

9.
Time‐resolved transient absorption and fluorescence spectroscopy with nano‐ and femtosecond time resolution were used to investigate the deactivation pathways of the excited states of distyrylfuran, thiophene and pyridine derivatives in several organic solvents of different polarity in detail. The rate constant of the main decay processes (fluorescence, singlet–triplet intersystem crossing, isomerisation and internal conversion) are strongly affected by the nature [locally excited (LE) or charge transfer (CT)] and selective position of the lowest excited singlet states. In particular, the heteroaromatic central ring significantly enhances the intramolecular charge‐transfer process, which is operative even in a non‐polar solvent. Both the thiophene and pyridine moieties enhance the S1→T1 rate with respect to the furan one. This is due to the heavy‐atom effect (thiophene compounds) and to the 1(π,π)*→3(n,π)* transition (pyridine compounds), which enhance the spin‐orbit coupling. Moreover, the solvent polarity also plays a significant role in the photophysical properties of these push–pull compounds: in fact, a particularly fast 1LE*→1CT* process was found for dimethylamino derivatives in the most polar solvents (time constant, τ≤400 fs), while it takes place in tens of picoseconds in non‐polar solvents. It was also shown that the CT character of the lowest excited singlet state decreased by replacing the dimethylamino side group with a methoxy one. The latter causes a decrease in the emissive decay and an enhancement of triplet‐state formation. The photoisomerisation mechanism (singlet/triplet) is also discussed.  相似文献   

10.
Two Dy(III) complexes with benzoate derivative and 2,2′‐bipyridine ligands, [Dy(2,4‐DClBA)3bipy]2 and [Dy(o‐MOBA)3bipy]2·4H2O (2,4‐DClBA=2,4‐dichlorobenzoate; o‐MOBA=o‐methoxybenzoate; bipy=2,2′‐bipyridine), were prepared and characterized by elemental analysis, infrared spectra, ultraviolet spectra and thermogravimetry and differential thermogravimetry techniques. The thermal decomposition behavior of the two complexes under a static air atmosphere was discussed by thermogravimetry, differential thermogravimetry and infrared spectral techniques. The non‐isothermal kinetics were investigated by using a double equal‐double step method, a non‐linear isoconversional integral method and a Starink method. The mechanism functions of the first decomposition step for [Dy(2,4‐DClBA)3bipy]2 and the second decomposition step for [Dy(o‐MOBA)3bipy]2·4H2O were determined. Meanwhile, the thermodynamic parameters (ΔHne;, ΔGne; and ΔSne;) and kinetic parameters (activation energy E and the pre‐exponential factor A) for the two complexes were also calculated.  相似文献   

11.
The title compounds, (3R,5S,5′R,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐5′‐(2‐methylpropyl)tetradecahydro‐6′H‐spiro[cyclopenta[a]phenanthrene‐3,2′‐[1,4]oxazinane]‐6′,17(2H)‐dione, C26H41NO3, (I), and methyl (2R)‐2‐[(3R,5S,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐2′,17‐dioxohexadecahydro‐3′H‐spiro[cyclopenta[a]phenanthrene‐3,5′‐[1,3]oxazolidin‐3′‐yl]]‐4‐methylpentanoate, C28H43NO5, (II), possess the typical steroid shape (AD rings), but they differ in their extra E ring. The azalactone E ring in (I) shows a half‐chair conformation, while the carbamate E ring of (II) is planar. The orientation of the E‐ring substituent is clearly established and allows a rationalization of the biological results obtained with such androsterone derivatives.  相似文献   

12.
Abstract –The 1Ag?1Bu+ electronic absorption band and the vibronically coupled, C=C stretching Raman lines in the 1Ag? and 21Ag? states were recorded for spheroidene free in nonpolar and polar solvents as well as for spheroidene bound to the LH1 and LH2 complexes of Rhodobacter sphaeroides 2.4.1. The 1Bu+ energy exhibited a linear dependence on R(n) = (n2 - 1)/(n2+ 2) in both nonpolar and polar solvents; the line for polar solvents had a gentler slope and crossed the line for nonpolar solvents at R(n) = 0.3. The above characteristic of polar solvents was ascribed to the electric field generated by fluctuation of the solvent permanent dipoles; it stabilizes the 1Bu+ energy and reduces the polarizability of the solvent. The vibronically coupled, C=C stretching frequencies in the 1Ag? and 21Ag? states [ν(Ag) and [ν(2Ag)] also showed similar dependence on R(n), which is explained in terms of vibronic coupling among the 1Ag?, 21Ag? and 31Ag? states. The environment of spheroidene in the LH2 and LH1 complexes was assessed on the basis of the 1Bu+ energy and the ν(Ag) and [ν(2Ag) frequencies: Spheroidene in the LH2 complex is located in an environment with high polarizability, while spheroidene in the LH1 complex is located in an environment with lower polarizability.  相似文献   

13.
In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 4‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well‐separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red‐shift with respect to those of C2 , the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree‐Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2 , including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s?1) of C1 was much lower than that of salicylidene methylamine ( C3 , 2.045×1015 s?1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation.  相似文献   

14.
Blue light‐emitting polyfluorenes, PPF‐FSOs and PPF‐SOFs were synthesized via introducing spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers (2,7‐diyl and 2′,7′‐diyl) (FSO/SOF) into the poly[9,9‐bis(4‐(2‐ethylhexyloxy) phenyl)fluorene‐2,7‐diyl] (PPF) backbone, respectively. With the increasing contents of FSO and SOF moieties, the absorption and PL spectra of PPF‐FSOs show slight red shift, while that of PPF‐SOFs exhibit blue shift, respectively. The HOMO and LUMO levels reduce gradually with increasing SOF unit in PPF‐SOFs. The polymers emit blue light peaked around 430–445 nm and show an excellent spectral stability with the variation in current densities. The distinctly narrowing EL spectra were observed with the incorporation of isomers in the polymers. The full width at half maximum reduced by 15 nm for PPF‐SOFs, resulting in a blue shift with the CIE coordinates from (0.16, 0.11) to (0.16, 0.08). With a device configuration of ITO/PEDOT:PSS/EML/CsF/Al, a maximum luminance efficiency (LEmax) of 2.00 cd A?1, a maximum external quantum efficiency (EQEmax) of 3.76% with the CIE coordinates of (0.16, 0.08) for PPF‐SOF15 and a LEmax of 1.68 cd A?1, a EQEmax of 2.38% with CIE (0.16, 0.12) for PPF‐FSO10 were obtained, respectively. The result reveals that spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers are promising blocks for deep‐blue light‐emitting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2332–2341  相似文献   

15.
Indium‐bridged [1]ferrocenophanes ([1]FCPs) and [1.1]ferrocenophanes ([1.1]FCPs) were synthesized from dilithioferrocene species and indium dichlorides. The reaction of Li2fc?tmeda (fc=(H4C5)2Fe) and (Mamx)InCl2 (Mamx=6‐(Me2NCH2)‐2,4‐tBu2C6H2) gave a mixture of the [1]FCP (Mamx)Infc ( 41 ), the [1.1]FCP [(Mamx)Infc]2 ( 42 ), and oligomers [(Mamx)Infc]n ( 4 n ). In a similar reaction, employing the enantiomerically pure, planar‐chiral (Sp,Sp)‐1,1′‐dibromo‐2,2′‐diisopropylferrocene ( 1 ) as a precursor for the dilithioferrocene derivative Li2fciPr2, equipped with two iPr groups in the α position, gave the inda[1]ferrocenophane 51 [(Mamx)InfciPr2] selectively. Species 51 underwent ring‐opening polymerization to give the polymer 5 n . The reaction between Li2fciPr2 and Ar′InCl2 (Ar′=2‐(Me2NCH2)C6H4) gave an inseparable mixture of the [1]FCP Ar′InfciPr2 ( 61 ) and the [1.1]FCP [Ar′InfciPr2]2 ( 62 ). Hydrogenolysis reactions (BP86/TZ2P) of the four inda[1]ferrocenophanes revealed that the structurally most distorted species ( 51 ) is also the most strained [1]FCP.  相似文献   

16.
A series of 3‐oxoglutaric acid derivatives have been hydrogenated in different solvents in the presence of [RuCl(benzene)(S)‐SunPhos]Cl (SunPhos=(2,2,2′,2′‐tetramethyl‐[4,4′‐bibenzo[d][1,3]dioxole]‐5,5′‐diyl)bis(diphenylphosphine)). Unlike simple β‐keto acid derivatives, these advanced analogues can be readily hydrogenated in uncommon solvents such as THF, CH2Cl2, acetone, and dioxane with high enantioselectivities. Two possible catalytic cycles have been proposed to explain the different reactivities of these 1,3,5‐tricarbonyl substrates in the tested solvents. The C‐2 and C‐4 substituents had notable but irregular influence on the reactivity and enantioselectivity of the reactions. More pronounced solvent effects were observed: the ee values increased from around 20 % in EtOH or THF to 90 % in acetone. Inversion of the product configuration was observed when the solvent was changed from EtOH to THF or acetone, and a mixed solvent system can lead to better enantioselectivity than a single solvent.  相似文献   

17.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

18.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)‐3H,3′H‐[1,1′‐biisobenzofuranylidene]‐3,3′‐dione, (E)‐3‐(3‐oxobenzo[c] thiophen‐1(3H)‐ylidene)isobenzofuran‐1(3H)‐one, and (E)‐3H,3′H‐[1,1′‐bibenzo[c] thiophenylidene]‐3,3′‐dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single‐crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi‐colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

19.
The 3‐ and 4‐aminophenylacetylenes protected by t‐butoxycarbonyl (t‐Boc) and 9‐fluorenylmethoxycarbonyl (Fmoc) groups ( 3a – 6a ) were synthesized and polymerized using [(nbd)RhCl]2 ( 1 ) and [(nbd)Rh+‐η6‐PhB?Ph3] ( 2 ) catalysts. The t‐Boc‐containing polymers [poly( 3a ) and poly( 4a )] were obtained in high yield (82–91%). Among the Fmoc‐protected monomers, the para‐derivative polymerized well [poly( 6a ); yield = 85–94%], whereas its meta‐substituted analogue did not afford high molecular weight polymer in good yield [poly( 5a ); yield = 10–15%]. The use of KN(SiMe3)2 as a cocatalyst in conjunction with 1 led to a dramatic increase in the molecular weight of the polymers. The acid‐ and base‐catalyzed removal of the t‐Boc and the Fmoc groups, respectively, generated primary amine‐containing polymers [poly( 3b )–poly( 6b )] which cannot be obtained directly by the polymerization of the corresponding monomers. The solubility characteristics of the polymers bearing protected amino groups were quite different from those of the unprotected ones, the former being soluble in polar solvents, whereas the latter displayed poor solubility even in polar protic or highly polar aprotic solvents. The attempts to accomplish the free‐standing membrane fabrication by solution casting were successful only for poly( 3a ), and an augmentation in the gas permeability and CO2/N2 permselectivity was discerned in comparison with the unsubstituted poly(phenylacetylene) and poly(mt‐butyldimethylsiloxyphenylacetylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1853–1863, 2009  相似文献   

20.
Abstract— The photochemistry, photophysics, and photosensitization (Type I and II) of indomethacin (IN) (N-[p-chlorobenzoyl]-5-methoxy-2-methylindole-3-acetic acid) has been studied in a variety of solvents using NMR, high performance liquid chromatography-mass spectroscopy, transient spectroscopy, electron paramagnetic resonance in conjunction with the spin trapping technique, and the direct detection of singlet molecular oxygen (l O2) luminescence. Photodecomposition of IN (λex > 330 nm) in degassed or air-saturated benzene proceeds rapidly to yield a major (2; N-[p-chlorobenzoyl]-5-methoxy-2-methyl-3-methylene-indoline) and a minor (3; N-[p-chlorobenzoyl]-5-methoxy-2, 3-dimethyl-indole) decarboxylated product and a minor indoline (5; 1-en-5-methoxy-2-methyl-3-methylene-in-doline), which is formed by loss of the p-chlorobenzoyl moiety. In air-saturated solvents two minor oxidized products 4 (N-[p-chlorobenzoyl]-5-methoxy-2-methylindol-3-aldehyde) and 6 (5-methoxy-2-methyl-indole-3-aldehyde) are also formed. When photolysis was carried out in 18O2-saturated benzene, the oxidized products 4 and 6 contained 18O, indicating that oxidation was mediated by dissolved oxygen in the solvent. In more polar solvents such as acetonitrile or ethanol, photodecomposition is extremely slow and inefficient. Phosphorescence of IN at 77 K shows strong solvent dependence and its emission is greatly reduced as polarity of solvent is increased. Flash excitation of IN in degassed ethanol or acetonitrile produces no transients. A weak transient is observed at 375 nm in degassed benzene, which is not quenched by oxygen. Irradiation of IN (λex > 325 nm) in N2-gassed C6H6 in the presence of 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) results in the trapping of two carbon-centered radicals by DMPO. One adduct was identified as DMPO/.COC6H4-p-CI, while the other was probably derived from a radical formed during IN decarboxylation. In air-saturated benzene, (hydro) peroxyl and alkoxyl radical adducts of DMPO are observed. A very weak luminescence signal from 1O2 at 1268 nm is observed initially upon irradiation (λex= 325 nm) of IN in air-saturated benzene or chloroform. The intensity of this 1O2 signal increases as irradiation is continued suggesting that the enhancement in 1O2 yield is due to photoproduct(s). Accordingly, when 2 and 3 were tested directly, 2 was found to be a much better sensitizer of 1O2 than IN. In air-saturated ethanol or acetonitrile no IN 1O2 luminescence is detected even on continuous irradiation. The inability of IN to cause phototoxicity may be related to its photo stability in polar solvents, coupled with the low yield of active oxygen species (1O2, O2?-) upon UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号