首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyisoprene‐block‐poly(vinyl trimethylsilane) (PI‐b‐PVTMS) block copolymers having different isoprene contents are successfully chemically modified and characterized by proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. Gas transport properties of the initial block copolymers and their derivatives modified via hydrosilylation and hydrogenation are measured. The modified block copolymers show higher permeabilities for O2 and H2 than the unmodified block copolymers while maintaining similar O2/N2 and H2/N2 selectivities. Hydrosilylation and hydrogenation of block copolymers with a low isoprene content result in a permeability increase for O2 and H2 of 15 to 40%, respectively. Similarly, for block copolymers with high isoprene contents, increases in permeabilities up to 125% are observed compared to initial PI‐b‐PVTMS. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2013 , 51, 1252–1261  相似文献   

2.
Polyethylene glycol (PEG) end‐capped trifluorovinyl ether (TFVE) telechelomer was synthesized in one step via esterification of 4‐(trifluorovinyloxy) benzoic acid. The new telechelomer was characterized by attenuated total reflectance Fourier transform infrared (ATR‐FTIR), elemental analysis, and by 19F and 1H nuclear magnetic resonance (NMR) spectroscopy. The telechelomer and 4,4′‐bis(4‐trifluorovinyloxy)biphenyl (BPVE) were thermally copolymerized via step‐growth [2 + 2] cycloaddition at 160°C. The polymerization afforded PEG enchained biphenyl perfluorocyclobutyl (BP‐PFCB) copolymers that are solution processable and film forming. These copolymers were characterized by ATR‐FTIR, 19F NMR, and 1H NMR. Gel permeation chromatography (GPC) gave number‐average molecular weight (Mn) ranging 11,000 to 12,000. Compatibilization of PEG and a commercial polymer BP‐PFCB was achieved utilizing the new PEG BP‐PFCB copolymer, 3‐co2‐4 . It was found that 5 wt% of 3 ‐ co2 ‐ 4 was ideal to reduce interfacial tension by scanning electron microscope (SEM). In addition, phase homogeneity was studied by differential scanning calorimetry (DSC). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Synthesis of cysteine‐terminated linear polystyrene (PS)‐b‐poly(ε‐caprolactone) (PCL)‐b‐poly(methyl methacrylate) (PMMA)/or poly(tert‐butyl acrylate)(PtBA)‐b‐poly(ethylene glycol) (PEG) copolymers was carried out using sequential quadruple click reactions including thiol‐ene, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), Diels–Alder, and nitroxide radical coupling (NRC) reactions. N‐acetyl‐L ‐cysteine methyl ester was first clicked with α‐allyl‐ω‐azide‐terminated PS via thiol‐ene reaction to create α‐cysteine‐ω‐azide‐terminated PS. Subsequent CuAAC reaction with PCL, followed by the introduction of the PMMA/or PtBA and PEG blocks via Diels–Alder and NRC, respectively, yielded final cysteine‐terminated multiblock copolymers. By 1H NMR spectroscopy, the DPns of the blocks in the final multiblock copolymers were found to be close to those of the related polymer precursors, indicating that highly efficient click reactions occurred for polymer–polymer coupling. Successful quadruple click reactions were also confirmed by gel permeation chromatography. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
The preparation of a series of copolymers of Nt‐butylacrylamide (NTBAM) with acrylamide (AM) is reported. The insolubility of NTBAM in water led to the testing of methanol, t‐butanol, and mixtures of these solvents with water to obtain effective copolymerization. Several of these polymerizations produced nonhomogeneous product mixtures. Samples of the components were separated and characterized by photoacoustic Fourier transform infrared spectroscopy and 13C NMR spectroscopy. Hydrodynamic volumes of the products were obtained from solution‐viscosity measurements, gel permeation chromatography, and multi‐angle laser light scattering methods. The NTBAM‐co‐AM copolymers had degrees of polymerization and molecular weights in the 4.1–5.9 × 104 monomer units and 3.25–4.5 × 106 g/mol range, respectively. They contained from 15 to 36 mol % NTBAM. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1960–1977, 2001  相似文献   

5.
One‐step synthesis of block‐graft copolymers by reversible addition‐fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel initiator was reported. Block‐graft copolymers were synthesized in one‐step by simultaneous RAFT polymerization of n‐butylmethacrylate (nBMA) and ROP of ε‐caprolacton (CL) in the presence of a novel macroinitiator (RAFT‐ROP agent). For this purpose, first epichlorohydrin (EPCH) was polymerized by using H2SO4 via cationic ring‐opening mechanism. And then a novel RAFT‐ROP agent was synthesized by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin (poly‐EPCH). By using the RAFT‐ROP agent, poly[CL‐b‐EPCH‐b‐CL‐(g‐nBMA)] block‐graft copolymers were synthesized. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The block lengths of the block‐graft copolymers were calculated by using 1H‐nuclear magnetic resonance (1H NMR) spectrum. The block length could be adjusted by varying the monomer and initiator concentrations. The characterization of the products was achieved using 1H NMR, Fourier‐transform infrared spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and fractional precipitation (γ) techniques. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2651–2659  相似文献   

6.
Starch and poly(p‐dioxanone) (PPDO) are the natural and synthetic biodegradable and biocompatible polymers, respectively. Their copolymers can find extensive applications in biomedical materials. However, it is very difficult to synthesize starch‐graft‐PPDO copolymers in common organic solvents with very good solubility. In this article, well‐defined polysaccharides‐graft‐poly(p‐dioxanone) (SAn‐PPDO) copolymers were successfully synthesized via the ring‐opening polymerization of p‐dioxanone (PDO) with an acetylated starch (SA) initiator and a Sn(Oct)2 catalyst in bulk. The copolymers were characterized via Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, thermogravimetric analysis (TG), differential scanning calorimetry, and wide angle x‐ray diffraction. The in vitro degradation results showed that the introduction of SA segments into the backbone chains of the copolymers led to an enhancement of the degradation rate, and the degradation rate of SAn‐PPDO increased with the increase of SA wt %. Microspheres with an average volume diameter of 20 μm, which will have potential applications in controlled release of drugs, were successfully prepared by using these new copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5344–5353, 2009  相似文献   

7.
An organic–inorganic copolymer with polyhedral oligomeric silsesquioxane (POSS) and xanthate moieties in the main chain was synthesized via the polycondensation between 3,13‐di(2‐bromopropionate)propyl double‐decker silsesquioxane (DDSQ) and 1,4‐di(xanthate potassium)butane. This hybrid copolymer was used as the macromolecular chain transfer agent to obtain the organic–inorganic poly(N‐vinylpyrrolidone) (PVPy) copolymers via a reversible addition fragmentation chain transfer/macromolecular design via the interchange of xanthates (RAFT/MADIX) polymerization approach; the polymerization behavior of N‐vinyl pyrrolidone was investigated by means of gel permeation chromatography. It was found that the polymerization was in a living and controlled manner. Transmission electron microscopy (TEM) showed that the organic–inorganic PVPy copolymers with DDSQ in the main chains were microphase‐separated in bulks. Compared to plain PVPy, the organic–inorganic PVPy copolymers displayed the decreased glass transition temperatures (Tgs); the decreased Tgs are attributable to the effect of the introduced DDSQ cages on the packing of PVPy chains as evidenced by means of Fourier transform infrared spectroscopy (FTIR). In water, the organic–inorganic PVPy copolymers can self‐assemble into the spherical nano‐objects with the size of 20–50 nm in diameter. In the self‐assembled nano‐objects, the aggregates of the hydrophobic DDSQ constituted the cores of the polymeric micelles whereas the PVPy chains between the DDSQ behaved as the coronas of the polymeric micelles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2949–2961  相似文献   

8.
Tris‐(benzyltriazolylmethyl)amine (TBTA) has been immobilized onto a styrenic monomer and subsequently copolymerized with N‐isopropyl acrylamide (NIPAM) to afford catalytically active thermo‐responsive copolymers for copper assisted click chemistry. P(TBTA‐co‐NIPAM) copolymers were synthesized with incorporation of between 2 and 10 ligand units per chain and tuneable molecular weight (28–148 kDa). A combination of 1H NMR spectroscopy, size exclusion chromatography (SEC) and elemental analysis (EA) confirmed the controlled synthesis of these polymers and allowed for quantification of the degree of TBTA‐functionalized monomer incorporation. After loading with copper(I) bromide, this homogeneous catalyst system was added to a water/ethyl acetate two‐phase system. Using this biphasic system aqueous click reactions could be performed at room temperature, while organic click chemistry could be performed above the cloud point temperature of the catalyst system. The polymer catalyst system could be regenerated via extraction by making use of its lower critical solution temperature (LCST)‐behavior, and then reused for further copper(I) catalyzed azide‐alkyne cycloaddition (CuAAC) reactions. While a reduced catalytic activity is observed as a result of copper leaching in aqueous click reactions, the recycling experiments in the organic phase demonstrated that this copolymer supported system allows for efficient recycling and reuse. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

10.
A hetero‐arm star polymer, polystyrene‐poly(N‐isopropylacrylamide)‐ poly(2‐(dimethylamino)ethylmethacrylate) (PSt‐PNIPAM‐PDMAEMA), was synthesized by “clicking” the alkyne group at the junction of PSt‐b‐PNIPAM diblock copolymer onto the azide end‐group of PDMAEMA homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. PSt‐PNIPAM‐PDMAEMA micelles with PSt block as core and PNIPAM and PDMAEMA blocks as shell were formed when adding the copolymer solution in THF into 10 folds of water. Lower critical solution temperature (LCST) of PNIPAM and PDMAEMA homopolymer is 32 °C for PNIPAM and 40 to 50 °C for PDMAEMA, respectively. Upon continuous heating through their LCSTs, PSt‐PNIPAM‐PDMAEMA core‐shell micelles exhibited two‐stage thermally induced collapse. The first‐stage collapse, from 20 to 34 °C, is ascribed to the shrinkage of PNIPAM chains; and the second‐stage collapse, from 38 to 50 °C, is due to the shrinkage of PDMAEMA chains. Dynamic light scattering was used to confirm the double phase transitions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 786–796, 2009  相似文献   

11.
We report on the synthesis of novel poly(N‐isopropylacrylamide)‐b‐poly(oligo ethylene glycol methyl ether acrylate) (PNIPAM‐b‐POEGA) thermoresponsive block copolymers using reversible addition–fragmentation chain transfer polymerization methodologies. The synthesized block copolymers are characterized by gel permeation chromatography, nuclear magnetic resonance, Fourier transform infrared (FTIR) techniques in terms of molecular weight and composition. Their thermoresponsive self‐assembly in aqueous media is investigated using dynamic and static light scattering. The PNIPAM‐b‐POEGA thermoresponsive block copolymers formed aggregates in water by increasing the temperature above the lower critical solution temperature value of PNIPAM block. Solution pH seems to affect the self‐assembly behavior in some cases due to the presence of ? COOH end groups. Therefore, the copolymers were utilized as “smart” nanocarries for the hydrophobic drug indomethacin, implementing a novel encapsulation protocol taking advantage of the thermoresponsive character of the PNIPAM block. The empty and loaded self‐assembled nanocarriers systems were studied by light scattering techniques, ultraviolet–visible, and FTIR spectroscopy, which gave information on the size and structure of the nanocarriers, the drug loading content and the interactions between the drug and the components of the block copolymers. Drug loaded nanostructures show stability at room temperature, due to active drug/block copolymer interactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1467–1477  相似文献   

12.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

13.
We employed for the first time double click reactions: Cu(I) catalyzed azide‐alkyne 1,3‐dipolar cycloaddition and Diels–Alder (4 + 2) reactions for the preparation of H‐shaped polymer possessing pentablocks with different chemical nature (H‐shaped quintopolymer) using one‐pot technique. H‐shaped quintopolymer consists of poly(ethylene glycol) (PEG)‐poly(methylmethacrylate) (PMMA) and poly(ε‐caprolactone) (PCL)‐polystyrene (PS) blocks as side chains and poly (tert‐butylacrylate) (PtBA) as a main chain. For the preparation of H‐shaped quintopolymer, PEG‐b‐PMMA and PCL‐b‐PS copolymers with maleimide and alkyne functional groups at their centers, respectively, were synthesized and simply reacted in one‐pot with PtBA with α‐anthracene‐ω‐azide end functionalities in N,N‐dimethylformamide (DMF) using CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst at 120 °C for 48 h. The precursors and the target H‐shaped quintopolymer were characterized comprehensively by 1H NMR, UV, FTIR, GPC, and triple detection GPC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3409–3418, 2009  相似文献   

14.
An efficient method for the synthesis of N‐alkylated 2‐(4‐substituted‐1H‐1,2,3‐triazol‐1‐yl)‐1H‐indole‐3‐carbaldehyde has been developed starting from oxindole and indole using Huisgen's 1,3‐dipolar cycloaddition reaction of organic azides to alkynes. The effect of catalysts and solvent on these reactions has been investigated. Among all these conditions, while using CuSO4·5H2O, DMF was found to be the best system for this reaction. It could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of halides, azides, and alkynes. The Huisgen's 1,3‐dipolar cycloaddition reaction was performed using CuSO4·5H2O in DMF with easy work‐up procedure.  相似文献   

15.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of polyhomologation of ylides and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization of styrene. Trithiocarbonate‐terminated polymethylenes (PM‐TTCB) (Mn = 1400 g mol?1; Mw/Mn = 1.09 and Mn = 2100 g mol?1; Mw/Mn = 1.20) were obtained via an esterification of S?1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetate) trithiocarbonate with hydroxyl‐terminated polymethylene synthesized via polyhomologation of ylides followed by oxidation. Then, a series of PM‐b‐PS (Mn = 5500–34,000 g mol?1; Mw/Mn = 1.12–1.25) diblock copolymers were obtained by RAFT polymerization of styrene using PM‐TTCB as a macromolecular chain‐transfer agent. The chain structures of all the polymers were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography, and Fourier transform infrared spectroscopy. The thiocarbonylthio end‐group of PM‐b‐PS was transformed into thiol group by aminolysis and confirmed by UV–vis spectroscopy. In addition, microfibers and microspheres of such diblock copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2892–2899  相似文献   

16.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

17.
The free‐radical copolymerization of N‐phenylmaleimide (N‐PhMI) with acrylic acid was studied in the range of 25–75 mol % in the feed. The interactions of these copolymers with Cu(II) and Co(II) ions were investigated as a function of the pH and copolymer composition by the use of the ultrafiltration technique. The maximum retention capacity of the copolymers for Co(II) and Cu(II) ions varied from 200 to 250 mg/g and from 210 to 300 mg/g, respectively. The copolymers and polymer–metal complexes of divalent transition‐metal ions were characterized by elemental analysis, Fourier transform infrared, 1H NMR spectroscopy, and cyclic voltammetry. The thermal behavior was investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG). The TG and DSC measurements showed an increase in the glass‐transition temperature (Tg) and the thermal stability with an increase in the N‐PhMI concentration in the copolymers. Tg of poly(N‐PhMI‐co‐AA) with copolymer composition 46.5:53.5 mol % was found at 251 °C, and it decreased when the complexes of Co(II) and Cu(II) at pHs 3–7 were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4933–4941, 2005  相似文献   

18.
Block copolymers on basis of poly(oxanorbornenes) bearing functional moieties in their side‐chains are prepared via a combination of ROMP‐methods and 1,3‐dipolar‐“click”‐reactions. Starting from N‐substituted‐ω‐bromoalkyl‐oxanorbornenes and alkyl‐/perfluoroalkyl‐oxanorbornenes, block copolymers with molecular weights up to 25,000 g mol?1 were generated. Subsequent nucleophilic exchange‐reactions yielded the block‐copolymers functionalized with ω‐azidoalkyl‐moieties in one block. The 1,3‐azide/alkine‐“click” reactions with a variety of terminal alkynes in the presence of a catalyst system consisting of tetrakis(acetonitrile)hexafluorophosphate copper(I) and tris(1‐benzyl‐5‐methyl‐1H‐ [1,2,3]triazol‐4‐ylmethyl)‐amine furnished the substituted block copolymers in high yields, as proven by NMR‐spectroscopy. The resulting polymers were investigated via temperature‐dependent SAXS‐methods, revealing their microphase separated structure as well as their temperature‐dependent behavior. The presented method offers the generation of a large set of different block‐copolymers from only a small set of starting materials because of the high versatility of the “click” reaction, thus enabling a simple and complete functionalization after the initial polymerization reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 485–499, 2007  相似文献   

19.
A novel N‐hydroxy succinimide‐based carbonate monomer that allows direct synthesis of polymers incorporating a reactive carbonate group in the side chain was synthesized. This new monomer was copolymerized with methyl methacrylate and poly(ethylene glycol) methylether methacrylate using free‐radical polymerization to obtain organo‐ and water‐soluble reactive copolymers. Copolymerization of the activated carbonate monomer with an azide‐containing monomer and N‐hydroxy succinimide‐containing activated ester monomer provided orthogonally functionalizable copolymers. The pendant reactive carbonate groups of the copolymers were functionalized with amines to obtain carbamates. Polymers capable of orthogonal functionalization could be selectively functionalized as desired using subsequent 1,3‐dipolar cycloaddition or amidation reactions. The novel monomer and the copolymers were characterized by 1H‐NMR, 13C‐NMR, and infrared spectroscopy. The efficient stepwise orthogonal functionalization of the copolymers were examined via 1H‐NMR spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号