首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vanadium oxide nanotubes (VOx‐NTs) are easily accessible in pure form from vanadium(V) alkoxides and amines by a sol‐gel reaction and a subsequent hydrothermal treatment. The wall structure of VOx‐NTs containing hexadecylamine or dodecylamine as the structure‐directing template has been characterised by transmission electron microscopy (TEM). A standard method for preparing TEM specimens was modified in order to investigate the cross‐sectional structure of the tubes. The elemental distribution in the layered structure inside the tube walls has been visualised by electron spectroscopic imaging: vanadium oxide builds up the layers that appear with dark contrast in the TEM images while carbon, i. e., the organic template, is present in between. The bent VOx layers inside the tube walls are preferentially scrolls rather than concentric cylinders. Moreover, some tubes are formed by a combination of both types. The layer structure inside the tube walls is frequently disordered, and several types of defects appear.  相似文献   

2.
MENG  Xiuxia  YANG  Naitao  TAN  Xiaoyao 《中国化学》2009,27(10):1925-1928
Polyelectrolyte nanotubes of poly(sodium 4‐styrene‐sulfonate) (PSS) with cationic poly(diallyl dimethyl ammonium chloride) (PDDA) (PSS/PDDA) were fabricated by a pressure‐filter‐template technique using microporous anodic aluminum oxide (AAO) as the template. UV‐Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and infrared spectroscopy (FT‐IR) were applied to characterize the obtained PSS/PDDA nanotubes. The results have shown that the PSS/PDDA nanotubes exhibit an amorphous structure and have the outer diameter of 200 nm and length of 25 µm respectively, which are in good agreement with the dimensions of the AAO template pores. The wall thickness of the nanotubes may be controlled by the number of the self‐assembled layers. Formation of the nanotubes follows a layer‐by‐layer (LbL) mechanism due to the electrostatic interactions, where the SO?3 groups of PSS are first adsorbed on the Lewis acid sites of AAO template pores.  相似文献   

3.
A nanocylindrical wall structure was obtained by layer‐by‐layer (LbL) assembly of poly‐L ‐arginine (PLA) and human serum albumin (HSA) and characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and cryogenic transmission electron microscopy (cryo‐TEM). SEM and SFM measurements of a lyophilized powder of (PLA/HSA)3 nanotubes yielded images of round, chimney‐like architectures with approximately 100 nm wall thickness. Cryo‐TEM images of the hydrated sample revealed that the tube walls are composed of densely packed HSA molecules. Moreover, when small‐angle X‐ray scattering was used to characterize the individual PLA and HSA components in aqueous solutions, maximum diameters of approximately 28 nm and 8 nm were obtained, respectively. These values indicate the minimum thickness of wall layers consisting of PLA and HSA. It can also be concluded from SEM as well as from cryo‐TEM images that the protein cylinders are considerably swollen in the presence of water. Furthermore, HSA retains esterase activity if assembled in nanotubes, as indicated by measurements of para‐nitrophenyl acetate hydrolysis under semi‐physiological conditions (pH 7.4, 22 °C). The enzyme activity parameters (Michaelis constant, Km, and catalytic constant, kcat) were comparable to those of free HSA.  相似文献   

4.
For the first time iridium oxide (IrO2) nanotubes are synthesized by electrodeposition in a polycarbonate (PC) template. Potential cycling (90 cycles) between 0.0 and 0.9 V is used for the preparation of IrOx nanotubes onto the PC template with a pore diameter of 100 nm. Field‐emission scanning electron microscopy (FESEM) images show, that IrO2 nanotubes with uniform diameters of 110±10 nm and an estimated length of 1–3 µm are formed. The electrochemical properties and the electrocatalytic activity of a glassy carbon‐IrOx nanotube modified electrode toward Cr3+ and As3+ oxidation are investigated. Finally, the modified electrode is used for micromolar detection of the proposed analytes using differential pulse voltammetry.  相似文献   

5.
Vanadium oxide nanotubes were synthesized using V2O5 powder as the precursor and hexadecylamine as the structure-directing template using a sol-gel reaction method followed by a one-step hydrothermal treatment. The effect of ultrasonics on the formation of nanotubes is reported. The structure and morphology of the nanotubes were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The inner and outer diameters of the nanotubes varied from 20 to 40 nm and 80 to 100 nm, respectively. The nanotubes measured several micrometers in length.  相似文献   

6.
《先进技术聚合物》2018,29(8):2273-2280
Multiresponsive amphiphilic poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) (PDMAEMA‐b‐PNIPAM) was successfully synthesized by reversible addition‐fragmentation chain transfer polymerization. Poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) has thermal and pH stimuli responsiveness. Their lower critical solution temperature and hydrodynamic radius can be adjusted by varying the copolymer composition, block length, solution pH, and temperature. In addition, a convenient method has been established to prepare cross‐linked silica‐coated nanoparticles with PDMAEMA‐b‐PNIPAM micelles as a template, resulting in good organic/inorganic hybrid nanoparticles defined as 175 to 220 nm. The structure and morphology were characterized by proton nuclear magnetic resonance (1HNMR), Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), and transmission electron microscopy‐energy dispersive X‐ray spectroscopy (TEM‐EDS).  相似文献   

7.
Summary: Polyaniline‐vanadium oxide nanocomposite nanosheets with thickness between 10 and 20 nm, and lateral dimensions in the range of hundreds of nanometers to several microns have been synthesized by in situ intercalation polymerization of aniline with layered V2O5 under hydrothermal conditions. The product was characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR) spectroscopy, and X‐ray diffractometer (XRD). The effects of the concentration of aniline and reaction temperature on the morphologies of polyaniline‐vanadium oxide nanocomposites have also been investigated.

SEM image of tremella‐like polyaniline‐vanadium oxide nanocomposite nanosheets.  相似文献   


8.
Ferroelectric SrBi2Ta2O9 nanotubes were fabricated by sol–gel dipping template technique and characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. They had a single orthorhombic perovskite structure, and most of SBT nanotubes showed highly preferential crystal growth along the [115] orientation. FE-SEM and TEM investigations showed that nanotubes have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. From HRTEM results, the clear lattice fringes indicated that the nanotubes are structurally uniform and well crystallized. The growth mechanisms of SBT nanotubes into the AAO templates were explored.  相似文献   

9.
Extended x-ray-absorption fine structure and scanning electron microscopy have been applied to the structure of the vanadium oxide layers on impregnated and grafted vanadium aerosils. When aerosil is impregnated with NH4VO3 solution, V2O5 crystals are formed; when vanadium is grafted by reacting the oxychloride with carrier OH groups, there are no visible crystals. On the other hand, the EXAFS spectra for the grafted specimens show all the oscillations found for crystalline V2O5. It is concluded that the vanadium oxide layers in these grafted materials have a long-range order similar to that in V2O5 and contain microcrystals having sizes up to 5 nm.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 5, pp. 652–655, September–October, 1987.  相似文献   

10.
The walls of vanadium oxide nanotubes (VOx‐NTs) are built up by vanadate layers between which the structure‐directing template, either a primary amine or a diamine with long alkyl chain, is located. The feasibility of various exchange reactions under preservation of the tubular morphology indicates a high structural flexibility of the VOx‐NTs. The structure of the vanadate layers appears to be the same in all tubular vanadates, as revealed by the similarity of the diffraction patterns. Plate‐like crystals of a new crystalline phase, structurally closely related to the nanotubes, have now been prepared with ethylene diamine, applying a route that is analogous to the VOx‐NT synthesis. The single crystal X‐ray structure determination showed that this new phase has the composition (en)V7O16 and crystallizes with triclinic symmetry. The structure is composed of V7O16 layers between which ethylene diamine mo le cules are embedded. The V7O16 layers comprise two sheets of square VO5 pyramids and VO4 tetrahedra that connect these sheets. The available experimental data establish that this V7O16 layer also is the basic element of the VOx‐NT wall structure. The simulated X‐ray powder diffraction pattern calculated with a corresponding structural mode for VOx‐NTs agrees well with the observed one.  相似文献   

11.
Well‐developed crystals of [Pt(NH3)4](HCO3)2 are employed as template for the synthesis of silicon dioxide nanotubes (SiO2‐NTs). Silicon dioxide, which is produced by a sol‐gel reaction, coats the surface of these crystals and builds up the nanotube walls. In the final step, the Pt‐salt fibers are thermally decomposed and auto‐reduced to metallic Pt nanoparticles. Scanning and transmission electron microscopy (SEM and TEM) investigations of the product confirm the formation of silicon dioxide nanotubes in high yield. The tube walls consist of amorphous silicon dioxide. The tube length generally is 0.5 — 3 μm, while the thickness varies in two distinct ranges: thick tubes have a diameter of 100 — 500 nm and thin ones of approximately 50 nm. Most of the NTs are filled with Pt particles, but others, typically the larger ones with open tube ends, obviously are empty. Presumably, open ends cause the observed Pt loss. In closed SiO2‐NTs, Pt forms as ca. 10 nm large particles in the tube core and as 1 — 2 nm large particles inside the tube walls.  相似文献   

12.
ZHAN  Baoqing  CUI  Qiliang  LIU  Wei  ZHANG  Jian  ZHAN  Fuxiang  NING  Jiajia  ZOU  Guangtian 《中国化学》2009,27(11):2175-2177
A facile hydrothermal process involving Ga(NO3)3·H2O·NaN3 solutions led to the formation of α‐GaOOH nano‐platelets. X‐ray diffraction (XRD) pattern revealed that the synthesized samples belonged to an orthorhombic crystal structure with lattice constants a=0.4510 nm, b=0.9750 nm and c=0.2965 nm. Transmission electron microscopy (TEM) studies showed that α‐GaOOH displayed the morphologies of an eccentric platelet‐like structure with 60–120 and 200–300 nm in the short and long axes, respectively. The average thickness of products was about 70 nm through scanning electron microscopy (SEM) images. The ultraviolet absorption of the samples was at 214 nm. The prepared α‐GaOOH nano‐platelets exhibited a broad emission band from 220 to 400 nm with a maximum at 343 nm under short UV excitation of 200 nm. Fourier transform infrared (FTIR) spectrum confirmed the existence of Ga2O and Ga–OH bending modes. A possible mechanism for the formation of α‐GaOOH nano‐platelets was discussed briefly.  相似文献   

13.
在阳极多孔氧化铝模板中利用层层自组装技术制备出了高度有序的聚电解质磺化酞菁铜(CuTsPc)/4,4′-联吡啶盐酸盐(DPDCH)纳米管, 并对其组装过程用UV-Vis, XRD和FT-IR进行了分析, 纳米管的微观形貌通过SEM和TEM进行表征. 结果表明, 第一层 CuTsPc和第二层DPDCH在AAO模板上的沉积平衡时间均约为60 min, 沉积过程主要有三个阶段: 模板孔外的吸附过程、孔内扩散控制的沉积过程和孔内表面沉积控制过程. CuTsPc主要以磺酸根吸附于AAO模板上. CuTsPc/DPDCH纳米管为非晶态体系. CuTsPc/DPDCH纳米管的外径和壁厚分别为200和20 nm, 外径受控于AAO模板的孔径, 壁厚与组装的层数有关, 利用此方法还可以制备其他带有相反电荷的有机小分子对纳米管或纳米线.  相似文献   

14.
A simple low temperature hydrothermal method was found to yield Na0.28V2O5 nanobelts after two days at 130 °C in acidic medium (H2SO4) without using any surfactant. The obtained products were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), and Raman spectroscopy. Their morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, their electrochemical behavior in a lithium battery was investigated. The XRD pattern shows that the product is composed of monoclinic Na0.28V2O5 nanobelts. From the FTIR spectrum, the band centered at 961 cm–1 is assigned to V=O stretching vibration, which is sensitive to intercalation and suggests that Na+ ions are inserted between the vanadium oxide layers. SEM/TEM analyses reveal that the products consist of a large quantity of nanobelts which have a thickness of 60–150 nm and a length of several tens of micrometers. The electrochemical results show that the nanobelts exhibit an initial discharge specific capacity of 390 mAh · g–1, and its stabilized capacity still remained around 200 mAh · g–1 after the 18th cycle.  相似文献   

15.
Ni(OH)2纳米管的制备、表征及电化学性能   总被引:3,自引:2,他引:3  
以多孔氧化铝为模板, 在不同溶液浓度下, 用化学沉积法制备了氢氧化镍纳米管. 采用XRD, SEM, TEM和HRTEM等手段, 对产物的物相、表面形貌及微结构进行了表征. 结果表明所得产物是高纯度的氢氧化镍纳米管, 外径约为180~220 nm, 管壁厚20~30 nm. 将所制备的氢氧化镍纳米管制成电极, 其电化学性能测试表明, Ni(OH)2纳米管的中空结构特点, 能够有效地提高镍电极的充电效率、放电比容量、高倍率及高温放电性能. 机理分析表明中空结构的Ni(OH)2纳米管对于提高碱性二次电池的综合性能有着极为重要的意义.  相似文献   

16.
CeO2 nanotubes have been synthesized facilely using carbon nanotubes (CNTs) as templates by a liquid phase deposition method. The properties of the CeO2 nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) as well as thermogravimetry and differential thermal analysis (TG-DTA). The obtained CeO2 nanotubes with a polycrystalline face-centered cubic phase have a uniform diameter ranging from 40 to 50 nm. The CeO2 nanotubes are composed of many tiny interconnected nanocrystallites of about 10 nm in size. The pretreatment of CNTs and calcination temperature were confirmed to be the crucial factors determining the formation of CeO2 nanotubes. A possible formation mechanism has been suggested to explain the formation of CeO2 nanotubes.  相似文献   

17.
Discrete π‐conjugated zinc porphyrin nanotubes are investigated as molecular analogues of carbon nanotubes. These porphyrin nanotubes have a diameter of 2.4 nm (Zn–Zn distance) and lengths of up to 3.6 nm, measured to the van der Waals surfaces of the outer β‐pyrrole hydrogen atoms, or 4.5 nm measured to the para hydrogen atoms of the aryl groups. We explore three different strategies for synthesizing these nanotubes. The first two strategies use a template to achieve direct or sequential stave‐joining, respectively, and proceed via linear oligomers that pre‐define the length of the nanotube. These strategies are applied to synthesize porphyrin nanotubes containing 12‐ or 18‐porphyrin subunits, with ethynylene (C2) or butadiynylene (C4) links between the 6‐porphyrin nanorings. The third strategy involves the covalent stacking of pre‐formed 6‐porphyrin nanorings to form a 12‐porphyrin nanotube, without using a template to guide this coupling reaction. The nanotubes show strongly red‐shifted absorption spectra and low fluorescence quantum yields, indicating structural rigidity and extensive π‐conjugation.  相似文献   

18.
Mesoporous iron phosphate (FePO4) was synthesized through assembly of polymeric micelles made of asymmetric triblock co‐polymer (polystyrene‐b‐poly‐2‐vinylpyridine‐b‐ethylene oxide; PS‐PVP‐PEO). The phosphoric acid solution stimulates the formation of micelles with core–shell‐corona architecture. The negatively charged PO43? ions dissolved in the solution strongly interact with the positively charged PVP+ units through an electrostatic attraction. Also, the presence of PO43? ions realizes a bridge between the micelle surface and the metal ions. The removal of polymeric template forms the robust framework of iron phosphate with 30 nm pore diameter and 15 nm wall thickness. Our method is applicable to other mesoporous metal phosphates by changing metal sources. The obtained materials were fully characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption–desorption, Raman spectroscope, and other techniques.  相似文献   

19.
多元醇法制备Cu2O/CNTs复合材料的研究   总被引:4,自引:0,他引:4  
以Cu(CH3COO)2•H2O和经硝酸处理的CNTs作为原料, 采用多元醇法成功合成了纳米氧化亚铜均布于碳纳米管表面的复合光催化剂. 用透射电镜(TEM), 高分辨透射电镜(HRTEM), X射线粉末衍射(XRD)对样品进行了表征, 测试结果表明大小为2~5 nm的氧化亚铜纳米颗粒均匀分散于碳纳米管的表面. 讨论了反应条件对Cu2O在CNTs上负载效果的影响并就多元醇法合成Cu2O/CNTs复合材料的反应机理作了初步探讨.  相似文献   

20.
Au porous nanotubes (PNTs) were synthesized by a templating technique that involves the chemical synthesis of Ag nanowire precursors, electroless surface modification with Au, and selective etching. A subsequent galvanic replacement reaction between [PtCl6]2? and residual Ag generates Ptdecorated Au porous nanotubes (Pt/Au PNTs), which represents a new type of selfsustained high surface area electrocatalysts with ultralow Pt loading. Structural characterizations with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Xray powder diffraction (XRD) reveal a novel nanoarchitecture with multimodal open porosity and excellent structural continuity and integrity. Cyclic voltammetry (CV) demonstrates that these Pt/Au PNTs possess very high electrocatalytic activity toward formic acid oxidation with enhanced tolerance to CO poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号