首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Copolymer nanoparticles from aniline (AN) and 4‐sulfonic diphenylamine (SDP) were simply synthesized for the first time by an oxidative precipitation polymerization with inorganic oxidants in an acidic aqueous medium without any external emulsifier or stabilizer. The polymerization yield, intrinsic viscosity, solubility, solvatochromism, electrical conductivity, and thermal stability of the copolymers were systematically studied through changes in the AN/SDP ratio, polymerization temperature, oxidant species, monomer/oxidant ratio, and acidic medium. The molecular structure of the copolymers was characterized with elemental analysis, IR, and ultraviolet–visible spectra. The polymers exhibited very good solubility in polar solvents, water, and NH4OH, and this was mainly attributable to the presence of sulfonic acid side groups. The electrical conductivity of the copolymers increased greatly, from 6.00 × 10?4 to 2.55 × 10?1 S/cm, with increasing AN content. The size of the copolymer particles, determined by laser particle analysis and atomic force microscopy (AFM), strongly depended on the polymer state and oxidant/monomer ratio. Pure dedoped particles of the AN/SDP (50/50) copolymer at an oxidant/monomer ratio of 1/2 exhibited minimum length/diameter ratios of 62/44 and 45/30 nm by AFM and transmission electron microscopy, respectively. The copolymers showed typical four‐step weight‐loss behavior in nitrogen and air and higher thermostability in nitrogen. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3380–3394, 2004  相似文献   

2.
The solid photoinitiator Lucirin TPO was encapsulated within a polymer shell by using the miniemulsion process. A solution of Lucirin TPO in methyl methacrylate (MMA) or butyl acrylate (BA)/MMA mixture was miniemulsified in water followed by a polymerization process in which phase separation of the Lucirin TPO and the formed polymer led to amorphously solidified Lucirin TPO nanoparticles encapsulated by polymer. These nanocapsules were freeze-dried and could be redispersed in acidic monomers, which are applied in polymeric dental adhesives. It is shown by 1H nuclear magnetic resonance spectroscopy that the shell separates the Lucirin TPO, which is sensitive to degradation in acidic media, from an ambient acidic monomer phase and protects it from fast decomposition. Investigations of the release kinetics of Lucirin TPO from the nanocapsules reveal that the kinetics are strongly dependent on the composition of the surrounding continuous phase.  相似文献   

3.
A new polymeric ligand was synthesized by the reaction of bisphenol-A and formaldehyde in the basic medium, followed by condensation polymerization with barbituric acid in the acidic medium. Polymer metal complexes were prepared by reaction of this resin with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymeric resin and its metal polychelates were characterized by elemental analysis, FT-IR, 13C-NMR, and 1H-NMR spectra. The geometry of the polymer metal complexes was evaluated by electronic spectra (UV-Vis) and magnetic moment measurement. Thermal stabilities show an increased thermal stability of the metal polychelates compared to the ligand. The antibacterial activities of all the synthesized polymers were investigated against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, showing good antibacterial activities against these bacteria. Cu(II) polychelate showed highest biocidal activity.  相似文献   

4.
Following the structural concept of copper-containing proteins in which dinuclear copper centers are connected by hydroxide bridging ligands, a bidentate copper(II) complex has been incorporated into nano-confined MCM-41 silica by a multistep sequential grafting technique. Characterization by a combination of EPR spectroscopy, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, IR spectroscopy , and solid-state (13)C and (29)Si cross-polarization magic-angle spinning (CP-MAS) NMR suggests that dinuclear Cu complexes are bridged by hydroxide and other counterions (chloride or perchlorate ions), similar to the situation for EPR-undetectable [Cu(II)···Cu(II)] dimer analogues in biological systems. More importantly, a dynamic mononuclear-dinuclear equilibrium between different coordination modes of copper is observed, which strongly depends on the nature of the counterions (Cl(-) or ClO(4)(-)) in the copper precursor and the pore size of the silica matrix (the so-called confinement effect). A proton-transfer mechanism within the hydrogen-bonding network is suggested to explain the dynamic nature of the dinuclear copper complex supported on the MCM-41 silica.  相似文献   

5.
The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6 wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively. The samples were characterized by nitrogen adsorption–desorption measurements, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and 29Si and 27Al magic-angle spinning–nuclear magnetic resonance (MAS–NMR) spectra. X-ray diffraction patterns indicate that the modified materials retain the standard MCM-41 structure. TPR patterns show the two-step reduction of Cu species. TPD study shows that Cu-impregnated Al-MCM-41 samples are more acidic than Al-MCM-41. From the MAS–NMR it was confirmed that most of the Al atoms are present tetrahedrally within the framework and some are present octahedrally in extraframework position. Impregnation of Cu shifted Al to the extraframework position. The catalytic activity of the samples toward hydroxylation of phenol in aqueous medium was evaluated using H2O2 as the oxidant at 80 °C. The effects of reaction parameters such as temperature, catalyst amount, amount of H2O2, and solvent were also investigated. Sample containing 4 wt.% copper-loaded Al-MCM-41-100 showed high phenol conversion (78%) with 68% catechol and 32% hydroquinone selectivity.  相似文献   

6.
Polyaniline (PANI) is prepared by chemical polymerization of aniline in acidic medium using ammonium peroxydisulfate ((NH4)2S2O8) as oxidant. The polymer, with a conductivity of 25–30 S/cm, is used to formulate conducting paints. A stable paint with a conductivity of 10?3 S/cm is obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A new series of electrically conductive pure copolymer nanoparticles was facilely synthesized by using oxidative polymerization of aniline (AN) and sodium diphenylamine-4-sulfonate (SDP) in acidic media in the absence of stabilizer. The variation of the structure of the copolymer particles was comprehensively studied by carefully choosing several important parameters, such as the comonomer ratio, oxidant/monomer ratio, polymerization time and temperature, monomer concentration, acidic medium, and oxidant species. Analytical techniques used include IR and UV-visible spectroscopy, X-ray diffraction, laser particle analysis, atomic force microscopy, and transmission electron microscopy. It was found that the particle size varied significantly with the above-mentioned polymerization parameters, only changes in the salt concentration in the aqueous testing solution had no noticeable effect. The polymerization conditions were optimized for the formation of copolymer nanoparticles with sought-after properties. The doped copolymer particles of AN/SDP (50:50) at an oxidant/monomer molar ratio of 0.5 exhibit a minimum length of 50 nm and a minimum diameter of 44 nm. The bulk electrical conductivity of the copolymer particles increases greatly from 5.90x10(-4) to 1.15x10(-2) S cm(-1) with increasing AN content. Compared with barely soluble polyaniline, the copolymers exhibit a remarkably enhanced solubility in most solvents, including NH4OH and even water, due to the presence of the hydrophilic sulfonic groups. Nanocomposite films of the nanoparticles and cellulose diacetate exhibit a percolation threshold of down to 0.1 wt %, at which the film retains 98% of the transparency, 94% of the strength, and 5x10(7) times the conductivity of a pure cellulose diacetate film.  相似文献   

8.
In the Atom Transfer Radical Polymerization (ATRP) technique, the suggested polymerization scheme is pivoted by a metal complex acting as a redox catalyst able to coordinate with the incipient radicals. The development of an a priori criterion of choice of the best (complex + solvent) combination is one of the current topics in this field. In this context we performed polarographic investigations on copper complexes with multidentate amino ligands (TMEDA and Me6TREN, plus acetonitrile as a reference) in water and in water + acetonitrile mixed solvents. In the latter case we took into account the competition between the co-solvent acetonitrile [a weaker ligand, but concentrated, selectively stabilizing Cu(I)], and the polyamine [a stronger ligand, but diluted, preferentially stabilizing Cu(II)], achieving further stabilization of the complexed copper, with a narrow potential range of stability as Cu(I), which is modulated through the acetonitrile/polyamine ratio. An interpretative scheme is presented.  相似文献   

9.
A series of copolymers were easily synthesized via the chemical oxidative polymerization of 2‐pyridylamine (2PA) and aniline (AN) in an acidic aqueous medium. The yield, intrinsic viscosity, and solubility of the copolymers were studied through changes in the 2PA/AN molar ratio, polymerization temperature, oxidant, oxidant/monomer molar ratio, and polymerization medium. The resulting 2PA/AN copolymers were characterized by 1H NMR, Fourier transform infrared, wide‐angle X‐ray diffraction, and thermogravimetric techniques. The results showed that the oxidative copolymerization from 2PA and AN was exothermic. The resultant copolymers were amorphous and exhibited enhanced solubility in comparison with polyaniline. The 2PA/AN copolymers showed the highest decomposition temperature (530 °C), the slowest maximum‐weight‐loss rate (1.2 %/min), the largest char yield (45 wt %), and the greatest degradation activation energy (65 kJ/mol) in nitrogen. The thermostability of the copolymers was generally higher in nitrogen than in air. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4407–4418, 2000  相似文献   

10.
The oxidative polymerization of aniline in aqueous acidic solution was carried out in the presence of a variety of organic compounds as potential traps for postulated intermediates. The polymerization was inhibited by hindered phenols and electron-rich alkenes, traps for cation-radicals. However, polyaniline was still obtained in the presence of electron-rich arenes, such as 1,3-dimethoxybenzene and 1,4-dimethoxybenzene, known as excellent receptors of nitrenium ions. Polymerization of N-phenyl-1,4-phenylenediamine was similarly carried out in the presence of potential traps. Polyaniline containing an N-phenyl group was obtained in the presence of 1,3-dimethoxybenzene and 1,4-dimethoxybenzene. Hindered phenols and 4-methoxystyrene only slightly inhibited polymerization of N-phenyl-1,4-phenylenediamine which most probably proceeded by way of the stable diarylamino radical. Copolymerization of aniline with 10 wt % of N-phenyl-1,4-phenylenediamine in the presence of these traps gave similar results to the polymerization of pure aniline. These results have led to the proposed cation-radical polymerization mechanism of aniline, in which the polymerization is a chain growth reaction through the combination of a polymeric cation-radical and an anilinium cation-radical. Step growth character is also present when a polymeric aminium cation-radical end combines with a diarylaminoended polymer. The copolymerization of N-phenyl-p-phenylenediamine can also occur by reaction of aniline cation-radical with a polyarylamine radical. The nitrenium mechanism was further rejected by the fact that attempted polymerization of N-phenylhydroxylamine, which forms authentic nitrenium ions in acid, failed to give polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2569–2579, 1999  相似文献   

11.
We report two-dimensional mesoscopic and macroscopic patterns observed in thin films formed due to polymerization of aniline at the air-water interface. The polymerization at the interface was coupled to a reaction in the bulk medium that was either an iron (ferroin)-catalyzed Belousov-Zhabotinsky (BZ) reaction or another reaction condition where the ferroin component of BZ reaction was replaced by FeSO(4) or Mohr's salt [(NH(4))(2)SO(4).FeSO(4).6H(2)O]. Also, a simple mixture of KBrO(3) and KBr in aqueous acidic solution produced patterned polymers at the interface, observed with aniline introduced from both the vapor phase and the bulk phase (by dissolving in H(2)SO(4)). Observation under an optical microscope revealed that the macroscopic patterns consisted of mesoscopic patterns of various geometrical shapes. In one case, regular circular mesoscopic patterned polymer growth was observed when the reaction was carried out in the presence of 2.02 mM sodium dodecyl sulfate. On the other hand, when the film was grown in an ultrasonicator bath there were no observable mesoscopic or macroscopic patterns in the film.  相似文献   

12.
The chemical oxidation of aniline with ammonium persulphate (APS) in aqueous acidic medium to form polyaniline (PANI) films has been studied using the quartz crystal microbalance (QCM) technique. PANI films can also grow onto glass supports immersed in the reaction mixture during the polymerization. The optical absorption for these films was measured. Multilayer deposition of polymer films onto the gold electrode of QCM and onto the glass supports from consecutive repetitive treatments by the reaction mixture containing aniline and APS, were studied. The induction period, the yield and the growth rate of the polymer films during the multilayer deposition were discussed. A relation between the thickness of the films determined, from QCM technique and the optical absorption of the films was established. The electrical conductivity of the PANI films was also measured.  相似文献   

13.
Spiny polyaniline (PANI) spheres (urchin-like) were coated on a poly(tetrafluoroethylene) (PTFE) membrane via a counter-diffuse interfacial oxidation polymerization of aniline in an aqueous medium. The produced composite membrane has both unexpected superhydrophilicity and conductivity. The microstructure and morphology of the composite membrane were characterized by FTIR, UV-vis, XRD, TGA, and SEM. Effects of reagent concentrations and polymerization time on the membrane morphology and properties were studied systematically. A possible formation mechanism of the urchin-like polyaniline nanospheres on PTFE surface has been briefly discussed. The co-effect of both spherical micelles formed by Nafion and nanofibrous micelles formed by aniline/p-toluenesulfonic acid was considered to be a reason to produce the urchin-like PANI nanospheres. The PTFE/Nafion/PANI composite membrane showed a convertible hydrophilic/hydrophobic feature via adjusting acidity/alkalinity of an aqueous medium and also was able to adsorb heavy metal-ions from the medium.  相似文献   

14.
N,N′-methylene bis-acrylamide crosslinked N-vinyl-2-pyrrolidone (NVPMBA) polymer was prepared via suspension polymerization technique and used as a polymeric support for the reduction of Cu(II) to Cu(I). It was observed that NVPMBA matrix facilitated the stabilization of Cu(I) particles. Furthermore, the copper supported polymer catalyst (CuNVPMBA) was characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis, transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), inductively coupled plasma optical emission spectroscopy, and derivative thermogravimetry analysis. SEM showed that both the polymer and CuNVPMBA exhibit a spherical morphology. TEM revealed that copper nanoparticles formed on the polymer surface have an average particle size of 5.14 nm. XPS analysis confirmed the presence of Cu(I) and Cu(II) in the ratio 1:2. The copper content in CuNVPMBA was found to be 1.25 wt%. CuNVPMBA was found to be very effective in promoting the click reaction between terminal alkynes and azides in aqueous media in the absence of ascorbate or external base under mild conditions to form 1,2,3-triazoles in excellent yield with a copper loading as low as 0.2 mol%. The catalyst could be reused and recycled several times without significant loss of catalytic activity.  相似文献   

15.
The temperature‐sensitive Cu(II) ion imprinted polymer (Cu(II)‐MIIP) materials were prepared via precipitation polymerization methods in supercritical carbon dioxide (scCO2) by using methanol as cosolvent. In the polymerization process, the polymerization mixture consists of copper ion, N‐isopropylacrylamide (functional monomer), ethylene glycol dimethacrylate (crosslinker), and 2,2′‐azobisisobutyronitrile (initiator). Non‐imprinted polymer particles were similarly prepared in the same way except for the presence of copper ion in the polymerization reaction. In this study, the characteristic of swelling/shrinking for Cu(II)‐MIIP in response to the change in temperature was investigated by scanning electron microscopy and photograph of swelling/shrinking for Cu(II)‐MIIP in deionized water. The above‐synthesized polymer particles were characterized by using Fourier transform infrared, thermo‐gravimetric analysis, and X‐ray diffraction techniques. Furthermore, the complete removal of the copper metal ion from the CuP was confirmed by atomic absorption spectroscopy. The selectivity adsorption of polymer materials was investigated from dilute aqueous solutions, and it was found to have an imprinting efficiency of 2.13 for Zn and Co ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Water-insoluble 8-quinolinolato metal chelates were formed and were stably solubilized in the aqueous solution of a water-soluble polymer, poly (N-isopropylacrylamide)(PNIPAAm), at room temperature. When the solution was heated at 50 degrees C, PNIPAAm precipitated and then formed a gum-like aggregate (polymer phase) having a very small volume. Accompanying the polymer precipitation, hydrophobic 8-quinolinolato chelates with cobalt(II), iron(III), nickel(II), and copper(II) ions were efficiently incorporated into the polymer phase. At 0.5% (w/v) of PNIPAAm and 8.0 mM of 8-quinolinol, the recoveries in the incorporation of four metal chelates were quantitative. The fluorescence spectra of a probe suggests that the hydrated polymer in the aqueous solution provides hydrophobic portions which can incorporate hydrophobic metal chelates. The polymer phase was easily taken out from the solution and was dissolved with a small amount of acetonitrile. The resulting solution could be directly introduced into a graphite furnace of atomic absorption spectrometry. The signal intensities for the absorbance of cobalt after concentrating the chelate were 100-fold greater than those before the concentration.  相似文献   

17.
Cu(II) complexes of 14- and 16-membered tetraaza macrocyclic ligands have been encapsulated in nanopores of zeolite-Y by a two-step process in the liquid phase: (1) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, and 1,3-diaminobenzene); [Cu(N–N)2]2+–NaY; in the nanopores of the zeolite-Y and (2) in situ condensation of the copper(II) precursor complex with ethylcinnamate. The new host–guest nanocomposite materials were characterized by chemical analysis and spectroscopic methods. The “neat” and encapsulated complexes exhibit good catalytic activity in the oxidation of ethylbenzene at 333 K, using tert-butyl hydroperoxide as the oxidant. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C–H bond activation takes place both at benzylic and aromatic ring carbon atoms.  相似文献   

18.
The catalysts with copper(II) ions stabilized onto different polymeric matrixes are prepared on either bulk (Cu/chitosan, Cu/polyethyleneimine-polyacrylic acid (PPA), and Cu-diiminate-impregnated polystyrene, polyarylate, or polymethylmethacrylate) or composite supports (egg-shell type Cu/chitosan/SiO2 and Cu/PPA/SiO2). The morphology of the samples and peculiarities of Cu(II) cationic sites are studied by SEM and ESR methods, and the catalyst activities are compared in oxidation of o- and p-dihydroxybenzenes by air in water. The catalytic activity of Cu(II) centers is governed by the coordination of isolated copper ions: for the most active catalysts, i.e., Cu/chitosan and Cu/PPA, the symmetry of isolated Cu2+-sites approximates a coordinatively unsaturated square-planar structure. At the same time, accessibility of active sites to water differs for different polymers, so the contribution of hydrophilicity to the reaction pattern cannot be excluded. Redox transformations of the active sites in the course of catalytic tests do not cause copper leaching from the polymer matrix. The binary composite systems with a film of low-loaded hydrofilic Cu-polymer supported on macroporous SiO2 demonstrate substantially higher activity in oxidation of hydroquinone and 3,4-dihydroxyphenylalanine, as compared with the bulk Cu/polymer samples. In turn, the specific activity of Cu/chitosan/SiO2 exceeds significantly that of Cu/PPA/SiO2 due to stabilization of a thinner and more uniform film of chitosan at the surface of silica.  相似文献   

19.
Stünzi H 《Talanta》1982,29(1):75-76
The Orion copper(II) ion-selective electrode responds well to copper(II) ions in aqueous medium. However, in the presence of acetonitrile and copper(I) ions, it can behave as a copper(I) ion-selective electrode with Nernstian behaviour.  相似文献   

20.
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号