首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We apply the existence theorem for solutions of the equations of motion for infinite systems to study the time evolution of measures on the set of locally finite configurations of particles. The set of allowed initial configurations and the time evolution mappings are shown to be measurable. It is shown that infinite volume limit states of thermodynamic ensembles at low activity or for positive potentials are concentrated on the set of allowed initial configurations and are invariant under the time evolution. The total entropy per unit volume is shown to be constant in time for a large class of states, if the potential satisfies a stability condition.On leave from: Department of Mathematics, University of California, Berkeley, California.  相似文献   

2.
We prove a global existence and uniqueness theorem for solutions of the classical equations of motion for a one-dimensional system of infinitely many particles interacting by finite-range two-body forces which satisfy a Lipschitz condition.  相似文献   

3.
We study further the metastable behavior of Metropolis dynamics for the two-dimensional nearest neighbor ferromagnetic Ising model, with positive and small external field, in the limit as the temperature vanishes (see [NS]). We focus on the typical features of the escape (nucleation) from the (metastable) configuration with all spins –1, to the (stable) configuration with all spins +1. Using the reversibility of the process as the main tool, we prove (for the discrete time version of the model) that the first step of a typical escaping path is the time reverse of a typical time evolution of a shrinking subcritical rectangular droplet, which is one slice smaller than a critical droplet. This subcritical droplet then evolves in a time of order 1 to a critical droplet, which finally grows with features described in [NS].Work partially supported by the Brazilian CNPq and by the American NSF, under grant DMS91-00725  相似文献   

4.
Binary disordered systems are usually obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor and super-conductor. They present very specific properties, in particular the second-order percolation phase transition, with its fractal geometry and the multi-fractal properties of the current moments. These systems are naturally modeled by regular bi-dimensional or tri-dimensional lattices, on which sites or bonds are chosen randomly with given probabilities. The two significant parameters are the ratio h = σ 1 of the complex conductances, σ and σ 1, of the two components, and their relative abundances p (or, respectively, 1 - p). In this article, we calculate the impedance of the composite by two independent methods: the so-called spectral method, which diagonalises Kirchhoff's Laws via a Green function formalism, and the Exact Numerical Renormalization method (ENR). These methods are applied to mixtures of resistors and capacitors (R-C systems), simulating e.g. ionic conductor-insulator systems, and to composites constituted of resistive inductances and capacitors (LR-C systems), representing metal inclusions in a dielectric bulk. The frequency dependent impedances of the latter composites present very intricate structures in the vicinity of the percolation threshold. In this paper, we analyse the LR-C behavior of compounds formed by the inclusion of small conducting clusters (“n-legged animals”) in a dielectric medium. We investigate in particular their absorption spectra who present a pattern of sharp lines at very specific frequencies of the incident electromagnetic field, the goal being to identify the signature of each animal. This enables us to make suggestions of how to build compounds with specific absorption or transmission properties in a given frequency domain. Received 16 August 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: laurent.raymond@l2mp.fr RID="b" ID="b"e-mail: steffen.schaefer@l2mp.fr RID="c" ID="c"UMR CNRS 6137  相似文献   

5.
A new approach to classical mechanics proposed by Prigogine, George, and Rae, which avoids the nonlinear Hamilton-Jacobi technique and introduces a linear eigenvalue problem involving probabilities as eigenvectors, is illustrated by the study of an exactly soluble model.  相似文献   

6.
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.  相似文献   

7.
Powdered solids often present very specific properties due to their granular nature. Such powders are often obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor and super-conductor. In a very natural way, these systems are modeled by regular lattices, whose sites or bonds are randomly chosen with given probabilities. It is known that the electrical and optical properties of random bi-dimensional (2D) networks are well described by their conductance's poles (resonances) and residues (amplitudes). The numerical implementation of a spectral method gave the spectral density, the AC conductivity, the multi-fractal properties of the moments for the local electric field (or currents), and spectrum of resonances characteristic of some small clusters (animals). This work extends the spectral method to the three-dimensional (3D) case where the problem is more complicated because the duality property and the corresponding symmetries are broken. As in the 2D-case, the two significant parameters are the ratio of the complex conductances and of both phases, and the probability p (resp. 1-p) of (resp. ). All the resonances lie on the negative real h-axis, i.e. for pure non resistive networks in the AC case. For a static (DC) system, only the value h=0 (corresponding to a binary system with finite and , or and finite) can give a resonance. Some applications are proposed, in particular the ability for small clusters (animals with one, two or three bonds) to present a singular response for well identified frequencies of the incident electromagnetic field. Received 24 March 1999  相似文献   

8.
Numerical investigation of a random, one dimensional Kronig-Penny-like model is performed using long chains and large ensembles. Dependence of the inverse localization length α on randomness, irreproducibility of resistance measurements and the dependence of the standard deviation of α on α and the length of the chain were studied. For energies, E=k2 close to the zone boundary k=π, we have found α~(π-k).  相似文献   

9.
Commensurate-incommensurate transition in the one-dimensional disordered system is investigated and the soliton density near commensurability at high and low temperatures is obtained.  相似文献   

10.
11.
S N Biswas  S K Soni 《Pramana》1986,27(1-2):117-127
The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. The authors felicitate Prof. D S Kothari on his eightieth birthday and dedicate this paper to him on this occasion.  相似文献   

12.
Joshua Feinberg 《Pramana》2009,73(3):565-572
We study the average density of resonances (DOR) of a disordered one-dimensional continuous open system. The disordered system is semi-infinite, with white-noise random potential, and it is coupled to the external world by a semi-infinite continuous perfect lead. Our main result is an integral representation for the DOR which involves the probability density function of the logarithmic derivative of the wave function at the contact point.  相似文献   

13.
14.
Generalized classical mechanics has been introduced and developed as a classical counterpart of the fractional quantum mechanics. The Lagrangian of generalized classical mechanics has been introduced, and equation of motion has been obtained. Lagrange, Hamilton and Hamilton-Jacobi frameworks have been implemented. Oscillator model has been launched and solved in 1D case. A new equation for the period of oscillations of generalized classical oscillator has been found. The interplay between the energy dependency of the period of classical oscillations and the non-equidistant distribution of the energy levels for fractional quantum oscillator has been discussed. We discuss as well, the relationships between new equations of generalized classical mechanics and the well-known fundamental equations of classical mechanics.  相似文献   

15.
The classical (non-quantum) cohomology of the Becchi-Rouet-Stora-Tyutin (BRST) symmetry in phase space is defined and worked out. No group action for the gauge transformations is assumed. The results cover, therefore, the general case of an open algebra and are valid off-shell. Each cohomology class contains all BRST invariant functions with fixed ghost number (an integer) which differ from each other by a BRST variation. If the ghost number is negative there is only the trivial class whose elements are equivalent to zero. If the ghost number is positive or zero there is a bijective correspondence between the BRST classes and those of the exterior derivative along the gauge orbits. These gauge orbits lie in the phase space surface on which the gauge generators are constrained to vanish. The BRST invariant functions of ghost numberp are then related to closedp-forms along the orbits. The addition of a BRST variation corresponds to the addition of an exact form. Some comments about the quantum case are included. The physical meaning of the classes with ghost number greater than zero is not discussed.Chercheur qualifié du Fonds National de la Recherche Scientifique (Belgium)  相似文献   

16.
In the Hilbert-space version of classical mechanics, scattering theory forN-particle systems is developed in close analogy to the quantum case. Asymptotic completeness is proved for forces of finite range. Infinite-range forces lead to the problem of stability of bound states and can be dealt with only in some simple cases.It is a pleasure to thank Prof.L. Motchane for his kind hospitality at the I.H.E.S., where most of this work was done, and where the author profited from discussions withD. Ruelle andO. E. Lanford.  相似文献   

17.
丁光涛 《物理学报》2009,58(6):3620-3624
研究了加速度线性相关的Lagrange函数,在加速度项系数对称的条件下,Lagrange方程保持为二阶微分方程;给出了从运动方程构造加速度相关的Lagrange函数的方法;研究同一系统的加速度相关和加速度无关的Lagrange函数之间的关系.举例说明结果的应用. 关键词: Lagrange方程 加速度相关的Lagrange函数 广义力学 Lagrange函数的规范变换  相似文献   

18.
Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.Research supported by NSF Grant No. CHE 77-16308.  相似文献   

19.
For a spectrum-generating algebra of classical observables, it is proven that the phase space dynamics simplifies to a Hamiltonian system on submanifolds of the algebra's dual. These submanifolds are coadjoint orbits if the algebra arises from a symplectic group action. If the Hamiltonian splits into the sum of a function of the algebra generators plus a commuting part, then the dynamics transfers to the dual space and an explicit formula is given for the flow vector field on the coadjoint orbits. A unique feature of the presentation is that all constructions are at the Lie algebra level.  相似文献   

20.
By utilizing some results of discrete mechanics, effects related to the discretization of the equations of motion of classical mechanics are analyzed. Some examples of periodic motions are developed and it is shown that the discrete frequencies are different from the continuous one. Numerical calculations involving orbits are presented. A numerical algorithm, suggested by discrete mechanics, is compared with conventional methods of second order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号