首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new method for rapid NMR imaging dubbed FLASH (fast low-angle shot) imaging is described which, for example, allows measuring times of the order of 1 s (64 × 128 pixel resolution) or 6 s (256 × 256 pixels). The technique takes advantage of excitation pukes with small hip angles eliminating the need of waiting periods in between successive experiments. It is based on the acquisition of the free induction decay in the form of a gradient echo generated by reversal of the read gradient. The entire imaging time is only given by the number of projections desired times the duration of slice selection and data acquisition. The method results in about a 100-fold reduction in measuring time without sacrificing spatial resolution. Further advantages are an optimized signal-to-noise ratio, the applicability of commercial gradient systems, and the deposition of extremely low rf power. FLASH imaging is demonstrated on phantoms, animals, and human extremities using a 2.3 T 40 cm bore magnet system. 1H NMR images are obtained with variable relaxation time contrasts and without motional artifacts.  相似文献   

2.
The shortest possible delay (Td) between slice selection and data acquisition is important for producing high quality 31P spectra. In single slice multivoxel spectroscopic imaging, conventional excitation using sinc-shaped rf pulses within typical gradient limitations can have values of Td that lead to significant spectral distortion and loss of signal. Truncated sinc excitation, which ends the excitation close to the center of the main rf lobe has been suggested for MR angiographic applications to produce short values of Td. In this work, the slice profiles, spectral signal-to-noise ratio (SNR) and spectral distortions are compared using the minimum delay achievable on a commercial MRI system for conventional 'sinc' rf excitation and truncated sinc excitation. Slice profiles are calculated using the Bloch equations and measured with a phantom. SNR and spectral distortions are evaluated from whole slice spectra on a human volunteer. On an MRI system with 1 G/cm gradients (0.5 msec risetime), for a 2.5-cm slice at 31P frequencies, conventional excitation can be adjusted to achieve Td = 2.5 msec while truncated sinc excitation yields Td = 1.5 msec. The truncated sinc excitation's shorter value of Td leads to much smaller spectral distortions, but its slice profile has "dispersive tails" which increase as more of the rf is truncated. Slice profile corrected SNR for the beta-ATP peak of 31P on a human volunteer is equivalent for both sequences while, qualitatively, in the PDE region the truncated sinc approach has improved SNR.  相似文献   

3.
Behar V  Adam D 《Ultrasonics》2004,42(10):1101-1109
A linear array imaging system with coded excitation is considered, where the proposed excitation/compression scheme maximizes the signal-to-noise ratio (SNR) and minimizes sidelobes at the output of the compression filter. A pulse with linear frequency modulation (LFM) is used for coded excitation. The excitation/compression scheme is based on the fast digital mismatched filtering. The parameter optimization of the excitation/compression scheme includes (i) choice of an optimal filtering function for the mismatched filtering; (ii) choice of an optimal window function for tapering of the chirp amplitude; (iii) optimization of a chirp-to-transducer bandwidth ratio; (iv) choice of an appropriate n-bit quantizer. The simulation results show that the excitation/compression scheme can be implemented as a Dolph–Chebyshev filter including amplitude tapering of the chirp with a Lanczos window. An example of such an optimized system is given where the chirp bandwidth is chosen to be 2.5 times the transducer bandwidth and equals 6 MHz: The sidelobes are suppressed to −80 dB, for a central frequency of 4 MHz, and to −94 dB, for a central frequency of 8 MHz. The corresponding improvement of the SNR is 18 and 21 dB, respectively, when compared to a conventional short pulse imaging system. Simulation of B-mode images demonstrates the advantage of coded excitation systems of detecting regions with low contrast.  相似文献   

4.
Thermodynamic limit of magnetization corresponding to the intact proton bath usually cannot be transferred in a single cross-polarization contact. This is mainly due to the finite ratio between the number densities of the high- and low-gamma nuclei, quantum-mechanical bounds on spin dynamics, and Hartmann-Hahn mismatches due to rf field inhomogeneity. Moreover, for fully hydrated membrane proteins refolded in magnetically oriented bicelles, short spin-lock relaxation times (T1ρ) and rf heating can further decrease cross polarization efficiency. Here we show that multiple equilibrations-re-equilibrations of the high- and low-spin reservoirs during the preparation period yield an over twofold gain in the magnetization transfer as compared to a single-contact cross polarization (CP), and up to 45% enhancement as compared to the mismatch-optimized CP-MOIST scheme for bicelle-reconstituted membrane proteins. This enhancement is achieved by employing the differences between the spin-lattice relaxation times for the high- and low-gamma spins. The new technique is applicable to systems with short T1ρ's, and speeds up acquisition of the multidimensional solid-state NMR spectra of oriented membrane proteins for their subsequent structural and dynamic studies.  相似文献   

5.
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.  相似文献   

6.
The purpose of this study was to investigate how flow affects slice-selective excitation, particularly for radiofrequency (rf) pulses optimized for slice-selective excitation of stationary material. Simulation methods were used to calculate the slice profiles for material flowing at different velocities, using optimal flow compensation when appropriate. Four rf pulses of very different shapes were used in the simulation study: a 90° linear-phase Shinnar-LeRoux pulse; a 90° self-refocusing pulse; a minimum-phase Shinnar-LeRoux inversion pulse; and a SPINCALC inversion pulse. Slice profiles from simulations with a laminar flow model were compared with experimental studies for two different rf pulses using a clinical magnetic resonance imaging (MRI) system. We found that, for a given rf pulse, the effect of flow on slice-selective excitation depends on the product of the selection gradient amplitude, the component of velocity in the slice selection direction, and the square of the rf pulse duration. The shapes of the slice profiles from the Shinnar-LeRoux pulses were relatively insensitive to velocity. However, the slice profiles from the self-refocusing pulse and the SPINCALC pulse were significantly degraded by velocity. Experimental slice profiles showed excellent agreement with simulation. In conclusion, our study demonstrates that slice-selective excitation can be significantly degraded by flow depending on the velocity, the gradient amplitude, and characteristics of the rf excitation pulse used. The results can aid in the design of rf pulses for slice-selective excitation of flowing material.  相似文献   

7.
We report a new regime of single-surface multipactor that was observed during high-power testing of an 11.424-GHz alumina-based dielectric-loaded accelerating structure. Previous experimental observations of single-surface multipactor on a dielectric occurred in cases for which the rf electric field was tangential and the rf power flow was normal to the dielectric surface (such as on rf windows) and found that the fraction of power absorbed at saturation is approximately 1%, independent of the incident power. In this new regime, in which strong normal and tangential rf electric fields are present and the power flow is parallel to the surface, the fraction of power absorbed at saturation is an increasing function of the incident power, and more than half of the incident power can be absorbed. A simple model is presented to explain the experimental results.  相似文献   

8.
特形脉冲调制中射频泄漏的影响及其补偿   总被引:2,自引:0,他引:2  
模拟器件的非理想因素和电路分布参数等影响造成了特形脉冲调制时的射频泄漏;这些射频泄漏将对特形脉冲的激发轮廓产生缺陷.本文从特形脉冲的射频调制原理着手,分析了射频泄漏对选择激发轮廓的影响,并采用一种新的相位循环方法对它进行补偿.实验的结果表明这种补偿方法有一定的实用性.  相似文献   

9.
磁性薄膜畴壁短波长自旋波模式激发   总被引:2,自引:0,他引:2       下载免费PDF全文
陈善宝  张志强 《物理学报》1996,45(12):2068-2072
研究约束在磁性薄膜畴壁中的自旋波Winter模式及其激励方式.用坡莫合金磁性栅格将高频均匀磁场转换成与自旋波Winter模式在时间频率和空间波长都匹配的磁场,从而实现相互间的有效耦合.采用锁相放大技术观测到了几百兆赫自旋波Winter模式微分吸收峰 关键词:  相似文献   

10.
Three schemes for imaging OH with tunable excimer lasers are compared: Excitation and detection at 308 nm (0–0 band, XeCl laser), excitation with a KrF laser at 248 nm (3–0 band) and a new scheme using excitation at 308 nm and detection at 343 nm (0–1 band). Each scheme has certain advantages: The first scheme gives by far the highest signal, the second is less sensitive to collisional quenching and the third is suited to dirty environments because of the long excitation wavelength and off-resonance detection.  相似文献   

11.
A recently developed rf echo planar imaging method has been modified to rapidly generate spectroscopic information along one in-plane axis and spatial information along the other. The method allows the production of one-dimensional chemical shift images (1D CSIs) in acquisition times of 18 sec or less. A specific phase-encode-reordering algorithm provides convenient manipulation of T2 weighting, yielding partial suppression of short T2 species like muscle water. The method is demonstrated in phantoms and in vivo with 1D CSIs of human brain and limbs. Abnormal fat distribution is demonstrated in the calf of a patient with aggressive fibromatosis. The advantages of short acquisition times obtainable with SIRFEN are offset by limited spectral resolution, suggesting that primary applications will be confined to rapid spatial mapping of major spectral components.  相似文献   

12.
The effect of fast magnetization reversal induced by external radio frequency (rf) fields has been studied in FeBO3 using the Mössbauer technique. The rf collapse and sideband effects were investigated as a function of intensity for two rf field frequencies: 62 and 36 MHz. The switching times estimated for magnetization reversal are of the same order of magnitude as in amorphous metals and Fe-Ni alloys. Because of the relatively short switching times the magnetization reversal must be of rotational character.  相似文献   

13.
Behar V  Adam D 《Ultrasonics》2005,43(10):777-788
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.  相似文献   

14.
A time-of-flight imaging technique is introduced to visualize fluid flow and dispersion through porous media using NMR. As the fluid flows through a sample, the nuclear spin magnetization is modulated by rf pulses and magnetic field gradients to encode the spatial coordinates of the fluid. When the fluid leaves the sample, its magnetization is recorded by a second rf coil. This scheme not only facilitates a time-dependent imaging of fluid flow, it also allows a separate optimization of encoding and detection subsystems to enhance overall sensitivity. The technique is demonstrated by imaging gas flow through a porous rock.  相似文献   

15.
Chen NG  Zhu Q 《Optics letters》2002,27(20):1806-1808
We propose a novel method for measuring time-dependent optical quantities. A train of excitation pulses modulated by a pseudorandom bit sequence is used as the light source, and a cross-correlation scheme is used to retrieve the impulse response. Simulation results of the temporal point-spread function of a diffusive wave are provided, as well as experimental results of a fluorescence decay profile. It is demonstrated that our new time-resolved technique can lead to high signal-to-noise ratios and short data acquisition times. A fluorescence-time-dependent suppression process was also been discovered.  相似文献   

16.
Variable radio frequency proton-electron double-resonance imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high-quality spatial resolution and short acquisition times. In this work we explored the potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition.  相似文献   

17.
Additional experimental evidence of rotary resonance effects for multiple-quantum coherence conversion in a spin-5/2 system is presented. Two-dimensional plots of the relative efficiency of MQ excitation and conversion are given as a function of radio frequency (rf) amplitude and pulse width. Data are presented for the excitation of five-quantum coherence (5QC), as well as for 5QC to three-quantum coherence (3QC) conversion, 5QC to IQC (the central transition coherence) conversion, and 3QC to IQC conversion. A two-fold increase in the signal-to-noise ratio is achieved by substituting low amplitude rf pulses in place of hard rf pulses for 5QC excitation and 5QC to 3QC conversion in a mixed multiple-quantum magic angle spinning (MAS) (MMQMAS) experiment. The anisotropic line shape for the low-amplitude rf pulse version of the MMQMAS experiment was observed to be distorted from the MAS line shape. The cause and implications of the distortion are discussed.  相似文献   

18.
Fast Field Echo imaging: an overview and contrast calculations   总被引:1,自引:0,他引:1  
Current fast imaging techniques are based on gradient echo sequences with reduced flip angle excitation pulses and very short repetition times TR. Practical T2 values may be of the order of TR or longer. In this situation, a different image contrast can be obtained, depending on details of the sequence. Four essentially different versions of the basic Fast Field Echo (FFE) sequence can be distinguished and are described systematically in this article. For these sequences, image contrast formulas are presented. Practical imaging should tolerate small field inhomogeneities. This requirement can be satisfied by only three of the four versions. Numerical simulations are used to study the influence of a modified phase alternation scheme on image contrasts of two of the remaining sequences. The results of the calculations are verified by phantom studies on a 1.5-T whole-body imager. Implications for contrast in clinical images are discussed in relation to head images obtained on the same machine.  相似文献   

19.
Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).  相似文献   

20.
Aluminium oxide films deposited by rf magnetron sputtering for protective coatings have been investigated. The alumina films are found to exhibit grainy surface microstructure. The grain size, structure and density depend on different system parameters such as argon and/or oxygen flow rate and applied rf power etc. The effect of transition of the discharge from metallic to reactive mode on the surface characteristics of the alumina film is studied. X-ray diffractometry reveals that in poisoned mode of sputtering and under optimized power and pressure, crystalline alumina film can be grown. Different system conditions are optimized for corrosion resistant aluminium oxide films with good adhesion properties. Nanostructured alumina film is obtained at lower pressure (8 × 10−4 to 9 × 10−4 Torr) by rf reactive magnetron sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号