首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Single crystal and powder EPR studies of VO2+ doped di-ammonium hydrogen citrate [(NH4)2C6H6O7] are carried out at room temperature. The angular variation of the EPR spectra show three different VO2+ complexes that are located in different chemical environment, and each environment contains two magnetically inequivalent VO2+ sites in distinct orientations occupying substitutional positions in the lattice. Crystalline field around the VO2+ ion is nearly axial. The optical absorption spectrum shows two bands centred at 16,949 and 12,345cm(-1). Spin Hamiltonian parameters and molecular orbital coefficients are calculated from the EPR and optical data, and results are discussed.  相似文献   

2.
Electron paramagnetic resonance (EPR) spectra of VO2+ ions doped in Kainite (a mineral salt) single crystals and powder were recorded at room temperature at X-band frequencies.The angular variation studies of the spectra indicate that the VO2+ ion enters Mg2+ ion site substitutionally. The principal values of g and A-tensors were determined from the EPR spectral studies. Using these EPR parameters, the molecular orbital bonding parameters of VO2+ ion in the lattice have been evaluated and discussed.  相似文献   

3.
Mn(II) and Co(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone have been synthesized and characterized by the investigations of electronic and EPR spectra and X-ray diffraction. Based on the spectral studies, an octahedral geometry is assigned for the Mn(II) and Co(II) complexes. X-ray powder diffraction studies reveal that Mn(II) and Co(II) complexes have triclinic crystal lattices. The unit cell parameters of the Mn(II) complex are a=11.0469 ?, b=6.2096 ?, c=7.4145 ?, α=90.646°, β=95.127°, γ=104.776°, V=489.7 ?(3) and those of Co(II) complex are a=9.3236 ?, b=10.2410 ?, c=7.8326 ?, α=90.694°, β=99.694°, γ=100.476°, V=724.2 ?(3). When the free ligand and its metal complexes are subjected to antibacterial activity, the metal complexes are proved to be more active than the ligand. However with regard to in vitro antioxidant activity, the ligand exhibits greater antioxidant activity than its metal(II) complexes.  相似文献   

4.
刘燕  刘庆俭 《合成化学》2016,24(11):982-986
以5-苯基-1,3-环己二酮,醛,乙酰乙酸乙酯(或乙酰丙酮)和乙酸铵为原料,在无水乙醇中经一锅反应合成了14个新型的7-苯基-1,4,5,6,7,8-六氢喹啉酮衍生物,总收率85%~95%,其结构经1H NMR, 13C NMR, IR和HR-MS表征。采用X-ray单晶衍射研究了2-甲基-4,7-二苯基-5-氧代-1,4,5,6,7,8-六氢喹啉顺反异构体(5a和5a′)的晶体结构。结果表明:5a空间群为C2/c, a=9.458 35(19) ,b=19.789 0(4) ,c=11.040 9(2) , α=90°, β=105.614(2)°, γ=90°,V=1 990.28(7) 3, Z=4, μ=0.673 mm-1, F(000)=824; 5a′空间群为C2/c, a=9.770 2(5) , b=19.981 0(10) , c=10.430 1(4) , α=90°, β=98.361(5)°, γ=90°, V=2 014.51(17) 3, Z=4, μ=0.665 mm-1, F(000)=824。  相似文献   

5.
The electron paramagnetic resonance (EPR) studies on VO2+ doped L-arginine phosphate monohydrate (LAP) single crystals at room temperature at X-band frequencies reveal the presence of two magnetically inequivalent VO2+ sites occupying interstitial positions in the lattice with fixed orientations and show very high angular dependence. The principal values of the g and A tensors indicate that the electrostatic field around the VO2+ ion is rhombic. The optical absorption spectra at room temperature show four absorption bands at 16155, 14775, 10928 and 10526 cm(-1), characteristic of rhombic symmetry. From EPR and optical absorption data, the molecular orbital bonding coefficients (beta2, epsilon2, P and k) and the crystal field parameters have been evaluated.  相似文献   

6.
Cu(2+) and VO(2+) doped ammonium hydrogen oxalate hemihydrate, [(NH(4))HC(2)O(4) . (1/2)H(2)O], single crystals have been studied at room temperature and at 113K in three mutually perpendicular planes. Both ions yield unexpectedly large number of lines. The calculated results of the Cu(2+) and VO(2+) doped in [(NH(4))HC(2)O(4) . (1/2)H(2)O] indicate that both ions substitute with the NH(4)(+) ion in the structure. The EPR spectra of Cu(2+) ions are characteristic of tetragonally elongated octahedral site and the spectra of VO(2+) are characteristic of tetragonally compressed complex. The angular variation of the EPR spectra has shown that two different Cu(2+) and VO(2+) complexes are located in different chemical environments, and each environment contains two magnetically inequivalent Cu(2+) and VO(2+) sites in distinct orientations occupying substitutional positions in the lattice and show very high angular dependence. The principal g and the hyperfine (A) values of both ions are determined.  相似文献   

7.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   

8.
Reaction of VO(acac)(2) with 2-mercaptophenol (mpH(2)) in the presence of triethylamine gives the mononuclear tris complex (Et(3)NH)(2)[V(mp)(3)] (1), in which the vanadyl oxygen has been displaced. An analogous reaction using 2-mercapto-4-methylphenol (mmpH(2)) afforded (Et(3)NH)(PNP)[V(mmp)(3)] (2), which was structurally characterized. 2 crystallizes in the orthorhombic space group Pna2(1 )with unit cell parameters (at -163 degrees C) a = 23.974(7) ?, b = 9.569(4) ?, c = 25.101(6) ?, and Z = 4. The coordination geometry around the vanadium is between octahedral and trigonal prismatic. Reaction of VO(acac)(2 )with the sodium salt of 2-mercaptophenol produces the vanadyl(IV) complex Na(Ph(4)P)[VO(mp)(2)].Et(2)O (3), which crystallizes in the triclinic space group P&onemacr; with unit cell parameters (at -135 degrees C) a = 12.185(4) ?, b = 12.658(4) ?, c = 14.244(4) ?, alpha = 103.19(2) degrees, beta = 100.84(2) degrees, and gamma = 114.17(2) degrees. The unit cell of 3 contains a pair of symmetry-related [VO(mp)(2)](2)(-) units bridged through vanadyl and ligand oxygen atoms by a pair of sodium ions, in addition to two PPh(4)(+) ions. The coordination geometry around the vanadium is square pyramidal, with a V=O bond length of 1.611(5) ?. 1, 2, and 3 are characterized by IR and UV-vis spectroscopies, magnetic susceptibility, EPR spectroscopy, and cyclic voltammetry. 1 and 2 can be oxidized by I(2, )Cp(2)Fe(+), or O(2) to [V(mp)(3)](-) and [V(mmp)(3)](-), respectively, which in turn can be reduced back to the dianions by oxalate ion. These reversible redox processes can be followed by UV-vis spectroscopy.  相似文献   

9.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

10.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

11.
Some of the ascidians belonging to the suborder Phlebobranchia accumulate vanadium ion efficiently from seawater. Clarification of the mechanism of this surprisingly efficient metal-accumulation system is desirable. Two mutually similar vanadium-binding proteins (vanabin1 and vanabin2) have recently been isolated from a vanadium-rich ascidian Ascidia sydneiensis samea. In this study, the vanadium-binding properties of vanabin2 have been investigated by X-band CW EPR and pulsed EPR spectroscopy. CW EPR spectra of samples containing various ratios of VO2+ and vanabin2 invariably exhibited a usual mononuclear-type VO2+ EPR signal with the intensity dependent on the ratio [vanabin]/[V]. EPR titration has shown that vanabin2 can bind up to approximately 23.9 vanadium ions per one molecule, almost all of which ( approximately 84%) are in a mononuclear VO2+ state as estimated by EPR quantitation. Electron spin-echo envelope modulation (ESEEM) spectra of VO-vanabin2 exhibited reasonably intense peaks attributable to amine nitrogen. This is consistent with the fact that vanabin2 is a lysine-rich protein (14 lysines out of 91 amino acids). The present study reveals the uniqueness of vanabin2, which can bind a large number of metal ions in a mononuclear fashion in contrast to the situation for ferritin and metallothionein.  相似文献   

12.
1 INTRODUCTION The chemistry of polyoxometalates has been at- tracting much attention due to the richness in their structures, electron and proton storage abilities, ther- mal stability and applications in catalysis, medicine and surface sciences[1~3]. In recent years, the mixed- valence as well as full oxidized vanadium polyoxo- anions have been crystallized with a variety of orga- nic molecules as counteranions[4~8]. However, the guiding principles of the crystal structures of poly- o…  相似文献   

13.
The EPR single-crystal and powder spectra of mixed crystals of (3-chloroanilinium)(8)(Cd(1-x)Cu(x)Cl(6))Cl(4) are measured as a function of temperature and x and analyzed with respect to the geometry and bonding properties of the CuCl(6) polyhedra. These undergo strong distortions due to vibronic Jahn-Teller coupling, with the resulting tetragonal elongation being superimposed by a considerable orthorhombic symmetry component induced by a host site strain acting as a compression along the crystallographic a axis. This strain becomes apparent in the cadmium compound (x = 0), whose crystal structure is also reported [a = 8.701(2) ?, b = 13.975(2) ?, c = 14.173(2) ?, alpha = 81.62(1) degrees, beta = 72.92(1) degrees, gamma = 77.57(1) degrees, triclinic P&onemacr;, Z = 1]. A calculation of the ground state potential surface and its vibronic structure nicely reproduces the g values, Cu-Cl spacings, and ligand field data. At high copper concentrations (including x = 1), the CuCl(6) polyhedra are coupled elastically, with the long axes of neighboring polyhedra having perpendicular orientations. The elastic correlation presumably is not of the long-range antiferrodistortive type, however. Above about 55 K, the angular Jahn-Teller distortion component becomes dynamically averaged within the time scale of the EPR experiment, leading to local tetragonally compressed CuCl(6) octahedra.  相似文献   

14.
Treatment of Boc-protected (S)-serine (Ser) methyl ester with triphenylphosphine bromide Ph(3)PBr (intermittently generated from PPh(3) and N-bromosuccinimide) yields Boc-3-bromoalanine (R)-Boc-BrAlaMe and, after deprotection, bromoalanine methyl ester (R)-BrAlaMe in the form of its hydrobromide. Boc-BrAlaMe and BrAlaMe have been structurally characterised. The reaction between BrAlaMe, salicylaldehyde (sal) and VO(2+) results in the formation of Schiff base complexes of composition [VO(sal-BrAlaMe)solv](+) (solv = CH(3)OH: 3, THF: 5) and [VO(sal-BrAla)THF] 4. DFT calculations of the structures of 3, 4 and 5, based on the B3LYP functional and employing the triple zeta basis set 6-311++g(d,p), provide distances Br···V = 4.0 ± 0.1 ?, if some distortion of the dihedral angle ∠N-C-C-Br is allowed (affording a maximum energy of ca. 45 kJ mol(-1)), and thus model Br···V distances detected by X-ray methods in bromoperoxidases from the marine algae Ascophyllum nodosum and Corallina pilulifera. The DFT calculations have been validated by comparing calculated and found structures, including the new complex [V(V)O(Amp-sal)OMe(MeOH)] (1, Amp is the aminophenol moiety) and the known complex [VO(L-Ser-van)H(2)O] (van = vanillin). Additional validation has been undertaken by checking experimental against calculated (BHandHLYP) EPR spectroscopic hyperfine coupling constants. Complexes containing bromine as a substituent at the phenyl moiety of a Schiff base ligand do not allow for an appropriate simulation of the Br···V distance in peroxidases. The closest agreement, d(Br···V) = 4.87 ?, is achieved with [VO(3Br-salSer)THF] (6), where 3Brsal-Ser is the dianionic Schiff base formed between 3-Br-5-NO(2)-salicylaldehyde and serine.  相似文献   

15.
The tetraaquabis(ethylisonicotinate)cobalt(II) disaccharinate, [Co(ein)2(H2O)4].(sac)2, (CENS), (ein: ethylisonicotinate and sac: saccharinate) complex has been synthesized and its crystal structure has been determined by X-ray diffraction analysis. The title complex crystallizes in monoclinic system with space group P2(1)/c and Z=2. The Co(II) cations present a slightly distorted CoN2O4 octahedral environment, with equatorially coordinated water molecules and axially pyridine N-bound ethylisonicotinate ligands. The magnetic environments of Cu2+-doped Co(II) complex have been identified by electron paramagnetic resonance (EPR) technique. Cu2+-doped CENS single crystals have been studied at room temperature in three mutually perpendicular planes. The calculated results of the Cu2+-doped CENS indicate that Cu2+ ion substitute with the Co2+ ion in the host lattice. The angular variations of the EPR spectra have shown that two different Cu2+ complexes are located in different chemical environments, and each environment contains two magnetically inequivalent Cu2+sites in distinct orientations occupying substitutional positions in the lattice and show very high angular dependence. The cyclic voltammogram of the title complex investigated in dimethylformamide (DMF) solution exhibits only metal centered electroactivity in the potential range -1.0-1.25V versus Ag/AgCl reference electrode.  相似文献   

16.
The kinetics of oxidation of bis(maltolato)oxovanadium(IV), BMOV or VO(ma)(2), by dioxygen have been studied by UV-vis spectroscopy in both MeOH and H(2)O media. The VO(ma)(2):O(2) stoichiometry was 4:1. In aqueous solution, the pH-dependent rate of the VO(ma)(2)/O(2) reaction to generate cis-[VO(2)(ma)(2)](-) is attributed to the deprotonation of coordinated H(2)O, the deprotonated species [VO(ma)(2)(OH)](-) being more easily oxidized (k(OH) = 0.39 M(-)(1) s(-)(1), 25 degrees C) than the neutral form VO(ma)(2)(H(2)O) (k(H)()2(O) = 0.08 M(-)(1) s(-)(1), 25 degrees C). The activation parameters for the two second-order reactions in aqueous solution were deduced from variable temperature kinetic measurements. In MeOH, VO(ma)(2) was oxidized by dioxygen to cis-VO(OMe)(ma)(2), whose structure was characterized by single-crystal X-ray diffraction; the crystals were monoclinic, C2/c, with a = 28.103(1) ?, b = 7.721(2) ?, c = 13.443(2) ?, beta = 94.290(7) degrees, and Z = 8. The structure was solved by Patterson methods and was refined by full-matrix least-squares procedures to R = 0.043 for 1855 reflections with I >/= 3sigma(I). The kinetic results are consistent with a mechanism involving an attack of O(2) at the V(IV) center, followed by the formation of radicals and H(2)O(2) as transient intermediates.  相似文献   

17.
The syntheses and the solid state structural and spectroscopic solution characterizations of VO(Me-acac)2 and VO(Et-acac)2 (where Me-acac is 3-methyl-2,4-pentanedionato and Et-acac is 3-ethyl-2,4-pentanedionato) have been conducted since both VO(acac)2 and VO(Et-acac)2 have long-term in vivo insulin-mimetic effects in streptozotocin-induced diabetic Wistar rats. X-ray structural characterizations of VO(Me-acac)2 and VO(Et-acac)2 show that both contain five-coordinate vanadium similar to the parent VO(acac)2. The unit cells for VO(Et-acac)2 and VO(Me-acac)2 are both triclinic, P1, with a = 9.29970(10) A, b = 13.6117(2) A, c = 13.6642(2) A, alpha = 94.1770(10) degrees, beta = 106.4770(10) degrees, gamma = 106.6350(10) degrees for VO(Et-acac)2 and a = 7.72969(4) A, b = 8.1856(5) A, c = 11.9029(6) A, alpha = 79.927(2) degrees, beta = 73.988(2)degrees, gamma = 65.1790(10)degrees for VO(Me-acac)2. The total concentration of EPR-observable vanadium(IV) species for VO(acac)2 and derivatives in water solution at 20 degreesC was determined by double integration of the EPR spectra and apportioned between individual species on the basis of computer simulations of the spectra. Three species were observed, and the concentrations were found to be time, pH, temperature, and salt dependent. The three complexes are assigned as the trans-VO(acac)2.H2O adduct, cis-VO(acac)2.H2O adduct, and a hydrolysis product containing one vanadium atom and one R-acac- group. The reaction rate for conversion of species was slower for VO(acac)2 than for VO(malto)2, VO(Et-acac)2, and VO(Me-acac)2; however, in aqueous solution the rates for all of these species are slow compared to those of other vanadium species. The concentration of vanadium(V) species was determined by 51V NMR. The visible spectra were time dependent, consistent with the changes in species concentrations that were observed in the EPR and NMR spectra. EPR and visible spectroscopic studies of solutions prepared as for administration to diabetic rats documented both a salt effect on speciation and formation of a new halogen-containing complex. Compound efficacy with respect to long-term lowering of plasma glucose levels in diabetic rats traces the concentration of the hydrolysis product in the administration solution.  相似文献   

18.
X-band single-crystal and powder EPR data were collected in the temperature range 4.2-300 K and under hydrostatic pressure up to 500 MPa for [(C(6)H(5))(3)(n-propyl)P](2)Cu(2)Cl(6) (C(42)H(44)P(2)Cu(2)Cl(6)). The crystal and molecular structure have been determined from X-ray diffraction. The compound crystallizes in the monoclinic space group P2(1)/n (Z = 2) and have unit cell dimensions of a = 9.556(5) ?, b= 17.113(3) ?, c = 13.523(7) ?, and beta = 96.10(4) degrees. The structure consists of two controsymmetric Cu(2)Cl(6)(2)(-) dimers well separated by complex anions. EPR spectra are typical for the triplet S = 1 state of Cu(2)Cl(6)(2)(-) dimer with parameters g(x)() = 2.114(8), g(y)() = 2.095(8), g(z)() = 2.300(8), and D(x)() = 0.025(1) cm(-)(1), D(y)() = 0.057(1) cm(-)(1), and D(z)() = -0.082(1) cm(-)(1) at room temperature. The D tensor is dominated by a contribution from anisotropic exchange but the dipole-dipole Cu-Cu coupling is not much less. The anisotropic exchange integrals were estimated to be as follows: J(xy,x)()()2(-)(y)()()2(an) = -45 cm(-)(1), J(xy,xy)()(an) = +17 cm(-)(1), J(xy,yz)()(an) = +62 cm(-)(1). The D tensor components are strongly temperature dependent and linearly increase on cooling with an anomalous nonlinear behavior below 100 K. The D values increase linearly with pressure, but the effect is much smaller than the temperature effect. This suggests that the D vs T dependence is dynamical in origin. EPR data, a possible mechanism, and contributions to the observed dependences are discussed and compared to EPR results for similar compounds.  相似文献   

19.
By application of flux growth methods in combination with redox reactions, single crystals of BaAg(2)Cu[VO(4)](2) can be synthesized. A new structure type (triclinic, P1, Z = 2, a = 5.448(2) ?, b = 5.632(3) ?, c = 14.393(6) ?, α = 94.038(9)°, β = 90.347(6)°, and γ = 118.195(5)°) has been found and will be described here. Structure-properties relationships have been investigated by spectroscopic methods (IR, UV-vis-NIR, ESR) and the electronic structure will be discussed within the angular-overlap model (AOM) for Cu(2+). Furthermore, we present the magnetization and specific heat data for BaAg(2)Cu[VO(4)](2) representing a Heisenberg spin system with exclusive super-super exchange (SSE) on a frustrated magnetic triangular lattice. Considerable antiferromagnetic (AFM) low-dimensional interaction is evident, and ferromagnetic-like long-range order sets in at ≈0.7 K.  相似文献   

20.
The magnetic environments of Cu2+ doped Na+ complex have been identified by electron paramagnetic resonance (EPR) technique. The angular variation of the EPR spectra has shown that two different Cu2+ complexes are located in different chemical environments, and each environment contains one magnetic Cu2+ site occupying substantial positions in the lattice and showing very high angular dependence. The principal g, and the hyperfine structure parameter (A) values of two sets of Cu2+ complex groups are determined. The covalency parameter, mixing coefficients and Fermi-contact term of the complex are obtained, and the ground state wave function of the Cu2+ ion in the lattice has been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号