首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Polyvinyl alcohol (PVA) nanofibers containing Ag nanoparticles were prepared by electrospinning PVA/silver nitrate (AgNO3) aqueous solutions, followed by short heat treatment, and their antimicrobial activity was investigated for wound dressing applications. Since PVA is a water soluble and biocompatible polymer, it is one of the best materials for the preparation of wound dressing nanofibers. After heat treatment at 155 °C for 3 min, the PVA/AgNO3 nanofibers became insoluble, while the Ag+ ions therein were reduced so as to produce a large number of Ag nanoparticles situated preferentially on their surface. The residual Ag+ ions were reduced by subsequent UV irradiation for 3 h. The average diameter of the Ag nanoparticles after the heat treatment was 5.9 nm and this value increased slightly to 6.3 nm after UV irradiation. It was found that most of the Ag+ ions were reduced by the simple heat treatment. The PVA nanofibers containing Ag nanoparticles showed very strong antimicrobial activity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2468–2474, 2006  相似文献   

2.
The reduction of Ag+ ions to Ag0 atoms is a highly endergonic reaction step, only the aggregation to Agn clusters leads to an exergonic process. These elementary chemical reactions play a decisive role if Ag nanoparticles (AgNPs) are generated by electron transfer (ET) reactions to Ag+ ions. We studied the formation of AgNPs in peptides by photoinduced ET, and in c-cytochromes by ET from their Fe2+/hemes. Our earlier photoinduced experiments in peptides had demonstrated that histidine prevents AgNP formation. We have now observed that AgNPs can be easily synthesized with less-efficient Ag+-binding amino acids, and the rate increases in the order lysine<asparagine<aspartate<serine. The ability of Fe2+/hemes of c-cytochromes to reduce Ag+ to AgNPs was studied in an enzymatic experiment and with living bacteria Geobacter sulfurreducens (Gs).  相似文献   

3.
Silver‐based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco‐friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K+ ions of layered potassium hexaniobate were partially substituted by Ag+ ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag+ ions located in the interlayer space remained in the ionic form. Increasing UV‐light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver‐containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.  相似文献   

4.
Poly[aniline(AN)‐co‐5‐sulfo‐2‐anisidine(SA)] nanograins with rough and porous structure demonstrate ultrastrong adsorption and highly efficient recovery of silver ions. The effects of five key factors—AN/SA ratio, AgI concentration, sorption time, ultrasonic treatment, and coexisting ions—on AgI adsorbability were optimized, and AN/SA (50/50) copolymer nanograins were found to exhibit much stronger AgI adsorption than polyaniline and all other reported sorbents. The maximal AgI sorption capacity of up to 2034 mg g?1 (18.86 mmol g?1) is the highest thus far and also much higher than the maximal Hg‐ion sorption capacity (10.28 mmol g?1). Especially at ≤2 mM AgI, the nanosorbents exhibit ≥99.98 % adsorptivity, and thus achieve almost complete AgI sorption. The sorption fits the Langmuir isotherm well and follows pseudo‐second‐order kinetics. Studies by IR, UV/Vis, X‐ray diffraction, polarizing microscopy, centrifugation, thermogravimetry, and conductivity techniques showed that AgI sorption occurs by a redox mechanism mainly involving reduction of AgI to separable silver nanocrystals, chelation between AgI and ? NH? /? N?/? NH2/ ? SO3H/? OCH3, and ion exchange between AgI and H+ on ? SO3?H+. Competitive sorption of AgI with coexisting Hg, Pb, Cu, Fe, Al, K, and Na ions was systematically investigated. In particular, the copolymer nanoparticles bearing many functional groups on their rough and porous surface can be directly used to recover and separate precious silver nanocrystals from practical AgI wastewaters containing Fe, Al, K, and Na ions from Kodak Studio. The nanograins have great application potential in the noble metals industry, resource reuse, wastewater treatment, and functional hybrid nanocomposites.  相似文献   

5.
The self‐assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag+ ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the ‐SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4‐nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h?1, respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s?1 and a TOF value of 1899 h?1.  相似文献   

6.
We have recently reported a kinetic and mechanistic study on oxidative dissolution of silver nanoparticles (AgNPs) by H2O2. In the present study, the parameters that govern the dissolution of AgNPs by O2 were revealed by using UV/Vis spectrophotometry. Under the same reaction conditions (Tris‐HOAc, pH 8.5, I=0.1 M at 25 °C) the apparent dissolution rate (kapp) of AgNPs (10±2.8 nm) by O2 is about 100‐fold slower than that of H2O2. The reaction rate is first‐order with respect to [Ag0], [O2], and [Tris]T, and inverse first‐order with respect to [Ag+] (where [Ag0]=total concentration of Ag metal and [Tris]T=total concentration of Tris). The rate constant is dependent on the size of AgNPs. No free superoxide (O2) and hydroxyl radical (⋅OH) were detected by trapping experiments. On the basis of kinetic and trapping experiments, an amine‐activated pathway for the oxidation of AgNPs by O2 is proposed.  相似文献   

7.
We present a systemic investigation of a galvanic replacement technique in which active‐metal nanoparticles are used as sacrificial seeds. We found that different nanostructures can be controllably synthesized by varying the type of more noble‐metal ions and liquid medium. Specifically, nano‐heterostructures of noble metal (Ag, Au) or Cu nanocrystals on active‐metal (Mg, Zn) cores were obtained by the reaction of active‐metal nanoparticles with more noble‐metal ions in ethanol; Ag nanocrystal arrays were produced by the reaction of active‐metal nanoparticles with Ag+ ions in water; spongy Au nanospheres were generated by the reaction of active‐metal nanoparticles with AuCl4? ions in water; and SnO2 nanoparticles were prepared when Sn2+ were used as the oxidant ions. The key factors determining the product morphology are shown to be the reactivity of the liquid medium and the nature of the oxidant–reductant couple, whereas Mg and Zn nanoparticles played similar roles in achieving various nanostructures. When microsized Mg and Zn particles were used as seeds in similar reactions, the products were mainly noble‐metal dendrites. The new approach proposed in this study expands the capability of the conventional nanoscale galvanic replacement method and provides new avenues to various structures, which are expected to have many potential applications in catalysis, optoelectronics, and biomedicine.  相似文献   

8.
Stable nanoparticle colloids of silver were obtained by irradiation of aqueous-alcoholic solutions of AgNO3 in the presence of mesoporous SiO2 powder and films modified with benzophenone (BP/SiO2). Colloidal solutions of Ludox silica were used to stabilize the photochemically produced nanoparticles of silver in solution. Formation of nanoparticles of Ag on the surface of mesoporous silica occurred on irradiation of SiO2 modified with silver ions (Ag+/SiO2) in the presence of benzophenone solution.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 100–104, March–April, 2005.  相似文献   

9.
Two sol-gel fabrication processes were investigated to make silica spheres containing Ag nanoparticles: (1) a modified Stöber method for silica spheres below 1 m size, and (2) a SiO2-film formation method on spheres of 3–;7 m size. The spheres were designed to incorporate silver nanoparticles of high (3) in a spherical optical cavity structure for the resonance effect. For the incorporation, interaction between [Ag(NH3)2]+ ion and Si-OH was important. In the Stöber method, the size of the silica spheres was determined by a charge balance of plus and minus ions on the silica surface. In the film formation method, the capture of Ag complex ion on the silica surface depended on whether the surface was covered with OH groups or not. After doping [Ag(NH3)2]+ into silica particles or SiO2 films on the spheres, these ions w ere reduced by NaBH4 to form silver nanoparticles. From plasma absorption at around 420 nm wavelength and TEM photographs of nanometer-sized silver particles, their formation inside the spherical cavity structures was confirmed.  相似文献   

10.
A novel fluorescent and colorimetric sensor was synthesized by a reprecipitation to probe Ag+ ions in water on naphthalene-thiourea-thiadiazole (NTTA) molecular nanocrystals. The fluorescent organic nanoparticles (FONs) allowed a highly sensitive determination of free Ag+ ions in aqueous media. The possible mechanism was discussed.  相似文献   

11.
Some microorganisms perform anaerobic mineral respiration by reducing metal ions to metal nanoparticles, using peptide aggregates as medium for electron transfer (ET). Such a reaction type is investigated here with model peptides and silver as the metal. Surprisingly, Ag+ ions bound by peptides with histidine as the Ag+‐binding amino acid and tyrosine as photoinducible electron donor cannot be reduced to Ag nanoparticles (AgNPs) under ET conditions because the peptide prevents the aggregation of Ag atoms to form AgNPs. Only in the presence of chloride ions, which generate AgCl microcrystals in the peptide matrix, does the synthesis of AgNPs occur. The reaction starts with the formation of 100 nm Ag@AgCl/peptide nanocomposites which are cleaved into 15 nm AgNPs. This defined transformation from large nanoparticles into small ones is in contrast to the usually observed Ostwald ripening processes and can be followed in detail by studying time‐resolved UV/Vis spectra which exhibit an isosbestic point.  相似文献   

12.
A chitosan-based electrode filled with silver nanoparticles (AgNPs) and glucose oxidase (GOD) was used as an enzyme electrode to investigate the effect of aging process of AgNPs on the GOD activity. Freshly prepared AgNPs inhibit the GOD activity, however, the inhibitory effect decreased with the increase of aging time. After aged for a period of time, AgNPs showed enhancement effect on the GOD activity. The effect of aging was studied by the measurements of Ag+ ions concentration, zeta (ζ) potential and X-ray photoelectron spectroscopy (XPS). And the results indicated that the concentration of Ag+ ions in the silver sol decreased during the aging period (i.e. Ag+ ions converted to more inert silver metal Ag0). The effect of AgNPs on the GOD activity can be changed by controlling the aging time of AgNPs. This research provides a new and simple approach to mediate AgNPs property, which is of great value in potential application of AgNPs in biosensors and nanoscale devices.  相似文献   

13.
Nanocomposites of Ag/TiO2 nanowires with enhanced photoelectrochemical performance have been prepared by a facile solvothermal synthesis of TiO2 nanowires and subsequent photoreduction of Ag+ ions to Ag nanoparticles (AgNPs) on the TiO2 nanowires. The as‐prepared nanocomposites exhibited significantly improved cathodic photocurrent responses under visible‐light illumination, which is attributed to the local electric field enhancement of plasmon resonance effect near the TiO2 surface rather than by the direct transfer of charge between the two materials. The visible‐light‐driven photocatalytic performance of these nanocomposites in the degradation of methylene blue dye was also studied, and the observed improvement in photocatalytic activity is associated with the extended light absorption range and efficient charge separation due to surface plasmon resonance effect of AgNPs.  相似文献   

14.
Nanostructured Ag films composed of nanoparticles and nanorods can be formed by the ultrasonication of ethanol solutions containing Ag2O particles. The present work examined the formation process of these films from ethanol solutions by two different agitation methods, including ultrasonication and mechanical stirring. The mass-transfer process from Ag2O particles to ethanol solvent is accelerated by the mechanical effects of ultrasound. Ag+ ions and intermediately reduced Ag clusters were released into the ethanol. These Ag+ ions and Ag clusters provide absorption bands at 210, 275 and 300 nm in UV-vis spectra. These bands were assigned to the absorption of Ag+, Ag 4 2+ and Agn (n?≈?3). The Agn clusters that readily grow to become Ag nanoparticles were formed due to the surface reaction of Ag2O particles with ethanol under ultrasonication. The reactions of Ag+ ions in ethanol to form Ag nanomaterials (through the formation of Ag 4 2+ clusters) were also accelerated by ultrasonication.  相似文献   

15.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

16.
Coordination-driven self-assembly of discrete molecular architectures of diverse shapes and sizes has been well studied in the last three decades. Use of dynamic imine bonds for designing analogous metal-free architectures has become a growing challenge recently. This article reports an organic molecular barrel ( OB4R ) as a potential template for nucleation and stabilization of very tiny (<1.5 nm) Ag nanoparticles (AgNPs). Imine bond condensation of a rigid tetra-aldehyde with a flexible diamine followed by imine-bond reduction yielded the discrete tetragonal organic barrel ( OB4R ). The presence of a molecular pocket ornamented with eight diamine moieties gives the potential for encapsulation of silver(I). The organic barrel was finally used as a molecular vessel for the controlled nucleation of silver nanoparticles (AgNPs) with fine size tuning through binding of AgI ions in the confined space of the barrel followed by reduction. Transmission electron microscopy (TEM) analysis of the Ag0@OB4R composite revealed that the mean particle size is 1.44±0.16 nm. The composite material has approximately 52 wt % silver loading. The barrel-supported ultrafine AgNPs [ Ag0@OB4R ] are found to be an efficient photocatalyst for facile Ullmann-type aryl-amination coupling of haloarenes at ambient temperature without using any additives. The catalyst was stable for several cycles of reuse without any agglomeration. The new composite Ag0@OB4R represents the first example of discrete organic barrel-supported AgNPs employed as a photocatalyst in Ullmann-type coupling reactions at room temperature.  相似文献   

17.
Silver nanoparticles preparation and the aggregation stability of the particles was investigated in lamellar liquid crystalline systems. A liquid crystal of HDTABr/pentanol/water was first prepared. The water content was next increased while keeping the mass ratio of HDTABr and pentanol constant. Silver nanoparticles were produced by replacing the aqueous phase by Ag sols of various concentrations (0.5–5×10–3 mol/l) or by an in situ preparation method, i.e., interlamellar reduction of Ag+ ions in the liquid crystalline phase. The stability of the silver nanoparticles was monitored by UV-VIS spectroscopy and TEM. The particle size ranged from 5 to 44 nm. The kinetic of silver nanoparticle aggregation was investigated. The effect of nanoparticles on structural ordering in liquid crystals was studied by XRD measurements and it was established that the lamellar distance (dL) was only slightly altered. Electronic Publication  相似文献   

18.
MOF-5 that sometimes called IRMOF-1 has been intensively studied in recent years to develop efficient photocatalyst to degrade refractory organics and inactivate bacteria for wastewater treatment. In the present work, Ag/Ag3PO4 nanoparticles incorporated in IRMOF-1 was successfully prepared via hydrothermal approach. The antibacterial activity of synthesized materials (IRMOF-1, Ag/Ag3PO4 nanoparticles and Ag/Ag3PO4-IRMOF-1 nanocomposite was compared against two types of bacteria (Escherichia coli (E. coil) as Gram negative and Staphylococcus aureus (S. aureus) as Gram-positive bacteria). The deactivation of the bacteria by the prepared material was measured in the dark and under visible light irradiation. The antibacterial activity of synthesized samples was investigated by determining the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), growth inhibition assay and inhibition zone. The Ag/Ag3PO4-IRMOF-1 nanocomposite exhibited stronger antibacterial activities than the Ag/Ag3PO4 nanoparticles and IRMOF-1 at all tested bacteria types. Based on inhibition zone, without any light irradiation, Ag/Ag3PO4-IRMOF-1 nanocomposite showed activity toward E. coil, but in presence of light nanocomposite depicted activity toward S. aureus. The results demonstrated that antibacterial activity of all synthesized samples in the dark and light against S. aureus bacteria was more than E. coil bacteria. The antibacterial activity mechanism was due to sustained-release of silver ions in the dark and reactive oxygen species (ROS) under visible light. The bioactivity of IRMOF-1 was related to the degradation of the its structure and the release of Zn2+ ions into the culture medium that bind to the cell wall and deactivation bacteria.  相似文献   

19.
Silver sulfide nanoparticles dispersed in sol-gel derived hydroxypropyl cellulose (HPC)-silica films have been successfully synthesized using H2S gas diffusion method. This is the first attempt to produce silver sulfide nanoparticles using this technique. Ag2S nanoparticles are generated through reaction of H2S gas with AgNO3 precursor dissolved in the HPC-silica matrix. Transmission electron microscope (TEM) and atomic force microscope (AFM) analysis reveal nanoparticles size distribution from 2.5 nm to 56 nm for H2S gas exposed sample. The surface chemistry of Ag2S nanoparticles and sol-gel derived HPC-silica matrix is confirmed by X-ray photoelectron spectroscopy (XPS). The negative shifts in the core-level XPS Ag (3d) binding energy of Ag2S nanoparticles are attributed to Ag : S surface atomic ratio exhibited by these nanoparticles with varying processing conditions. Following processing and characterization, suitability of the present method to produce silver sulfide ion-selective electrode is demonstrated by depositing Ag2S nanoparticles on a graphite rod. The high reponse function of the electrode is due to the presence of nanoparticles.  相似文献   

20.
Interactions between colloidal copper and silver ions lead to the formation of silver nanoparticles. The reaction proceeds through the intermediate stage of the formation of a copper-silver contact pair. The formation of bimetallic AgcoreCushell nanoparticles is observed in the presence of the “seeding” silver nanoparticles and upon the simultaneous radiochemical reduction of Ag+ and Cu2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号