首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a simple method to create nanosized, ordered, and highly luminescent thin film of Eu (III)–block copolymer complex. Micelles of polystyrene–block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in P4VP‐selective solvents (ethanol/N,N‐dimethylformamide (DMF) mixture) serve as nanoreactors for the synthesis of Eu(III)–block copolymer complex with the presence of 1,10‐phenanthroline (Phen) as cooperative ligand. The resulted quaternary complexes were characterized by FT‐IR spectra, 15N NMR spectra, and elemental analysis, indicative of a composition of Eu(III)–(PS‐b‐P4VP)–Phen–5DMF. Atomic force microscopy and transmission electron microscopy investigations reveal that the Eu(III)–(PS‐b‐P4VP)–Phen–5DMF complex can self‐organize into hexagonally ordered thin films when dip‐coated from the solution onto silicon or silica glass substrates. Such ordered thin films can emit red fluorescence of Eu3+ with strong intensity and long lifetime. This method can be easily extended to prepare other ordered luminescent rare earth–polymer complexes thin films. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2181–2189, 2005  相似文献   

2.
以稀土氧化物为原料,用溶胶-凝胶法制备前驱液,加入适量的聚乙烯醇做成膜物质,用浸渍拉提法在石英玻璃表面上得到均匀的薄膜,然后经过适当的干燥和热处理得到Y2O3∶Eu3+发光薄膜.讨论了Eu3+的掺杂浓度和热处理温度对薄膜发光性能的影响.试验表明:Eu3+的最佳掺杂浓度为8%(摩尔分数),薄膜的发光性能随热处理温度提高而增强,当热处理温度达到700℃后,薄膜的发光性能基本上稳定.同时用原子力显微镜和X射线衍射分析了薄膜的表面形貌和结构.  相似文献   

3.
Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29Si CP-MAS NMR, and N2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE3+ (Eu3+, Tb3+) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16.  相似文献   

4.
Four kinds of luminescent hybrid soft gels have been assembled by introducing the lanthanide (Eu3+, Tb3+) tetrakis β‐diketonate into the covalently bonded imidazolium‐based silica through electrostatic interactions. Here, the imidazolium‐based silica matrices are prepared from imidazolium‐derived organotriethoxysilanes by the sol–gel process, in which the imidazolium cations are strongly anchored within the silica matrices while anions can still be exchanged following application for functionalization of lanthanide complexes. The photoluminescence measurements indicated that these hybrid soft gels exhibit characteristic red and green luminescence originating from the corresponding ternary lanthanide ions (Eu3+, Tb3+). Further investigation of photophysical properties reveals that these soft gels have inherited the outstanding luminescent properties from the lanthanide tetrakis β‐diketonate complexes such as strong luminescence intensities, long lifetimes and high luminescence quantum efficiencies.  相似文献   

5.
The sol–gel fabrication of luminescent and transparent thin film of ionogels containing trivalent lanthanide complexes have been obtained from the silylated ionic liquid in the presence of lanthanide salts (Ln3+, Ln=Tb and Eu) and organic ligands. The resulting thin films were investigated by FT-IR spectroscopy, scanning electron microscopy and luminescence spectroscopy. FT-IR spectra reveal the hydrolysis and condensation of the silylated ionic liquid as well as the formation of luminescent lanthanide complexes in the thin films. Scanning electronic microscope images show the homogeneous characteristic of the thin films.  相似文献   

6.
MCM-41 mesoporous silica has been functionalized with two kinds of macrocylic calixarene derivatives Calix[4] and Calix[4]Br (Calix[4]=P-tert-butylcalix[4]arene, Calix[4]Br=5.11,17.23-tetra-tert-butyl-25.27-bihydroxy-26.28-bibromopropoxycalix[4]arene) through condensation approach of tetraethoxysilane (TEOS) in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as a template. Novel organic-inorganic mesoporous luminescent hybrid containing RE3+ (Eu3+, Tb3+) complexes covalently attached to the functionalized ordered mesoporous MCM-41, which are designated as RE-Calix[4]-MCM-41 and RE-Calix[4]Br-MCM-41, respectively, are obtained by sol-gel process. It is found that they all have high surface area, uniform in the mesostructure and good crystallinity. Measurement of the photoluminescence properties show the mesoporous material covalently bonded Tb3+ complexes (Tb-Calix[4]-MCM-41 and Tb-Calix[4]Br-MCM-41) exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding Eu-containing materials Eu-Calix[4]-MCM-41 and Eu-Calix[4]Br-MCM-41 due to the triplet state energy of modified organic ligands Calix[4]-Si and Calix[4]Br-Si match with the emissive energy level of Tb3+ very well.  相似文献   

7.
Visible up-conversion emissions at (435, 545, 580, 675 and 690 nm) and (437, 547 575 and 675 nm) have been observed from the sol-gel derived nano-crystalline Ho3+: BaTiO3 powders and thin films respectively, under 808 nm laser diode excitation emissions. Combined with the energy level structure of Ho3+ ions and the kinetics of the visible emissions, the up-conversion mechanism has been analyzed and explained. The blue, green and red emissions of both samples has been attributed to the ground state-directed transition from (5F1), (5S2) and (5F5), which are populated through excited state absorption (ESA) for 808 nm excitation. Nano-structure pure barium titanate and doped with different concentrations of Ho3+ ions in the from of powder and thin film have been prepared by sol-gel technique, using barium acetate (Ba(Ac)2), and titanium butoxide (Ti(C4H9O)4), as precursors. The thin films were prepared by sol-gel spin coating method. The as-grown thin films and powders were found to be amorphous, which crystallized to the tetragonal phase after heating at 750°C in air for 30 minutes. The crystallite sizes of the thin film and powder both doped with 4% Ho3+ ions was found to be equal to 11 and 16 nm, respectvely.  相似文献   

8.
A series of organic-inorganic hybrid material with chemically bonding have been prepared through the precursor (PDCA-Si) derived from 2-pyrrolidinone-5-carboxylic acid, which exhibits a self-organization cooperation interaction under the coordination to RE3+ (Eu3+, Tb3+). The pure organic silica hybrids (PDCA-Si) without RE3+ presents the small particle size and main blue luminescence with maximum peak 462 nm occupying a broad band from 425 to 550 nm. When Eu3+ and Tb3+ are introduced, the particle size of the hybrids increases, indicating the coordination effect has influence on the microstructure of hybrids. Besides, the corresponding Eu and Tb hybrids (Eu-PDCA-Si, Tb-PDCA-Si) show the characteristic red and green luminescence of Eu3+ and Tb3+, respectively, which suggests that the efficient intramolecular energy transfer process take place between carboxylic groups and lanthanide ions take place. The luminescence lifetimes and quantum efficiencies of them are determined and energy transfer efficiency between PDCA-Si and Eu3+ (Tb3+) is calculated.  相似文献   

9.
Double-scale composite lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films of 360 nm thickness were prepared by a modified composite sol-gel method. PZT films were deposited from both the pure sol and the composite suspension on Pt/Al2O3 substrates by the spin-coating method and were sintered at 650°C. The composite suspension formed after ultrasonic mixing of the PZT nanopowder and PZT sol at the powder/sol mass concentration 0.5 g mL−1. PZT nanopowder (≈ 40–70 nm) was prepared using the conventional sol-gel method and calcination at 500°C. Pure PZT sol was prepared by a modified sol-gel method using a propan-1-ol/propane-1,2-diol mixture as a stabilizing solution. X-ray diffraction (XRD) analysis indicated that the thin films possess a single perovskite phase after their sintering at 650°C. The results of scanning electron microscope (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses confirmed that the roughness of double-scale composite PZT films (≈ 17 nm) was significantly lower than that of PZT films prepared from pure sol (≈ 40 nm). The composite film consisted of nanosized PZT powder uniformly dispersed in the PZT matrix. In the surface micrograph of the film derived from sol, large round perovskite particles (≈ 100 nm) composed of small spherical individual nanoparticles (≈ 60 nm) were observed. The composite PZT film had a higher crystallinity degree and smoother surface morphology with necklace clusters of nanopowder particles in the sol-gel matrix compared to the pure PZT film. Microstructure of the composite PZT film can be characterized by a bimodal particle size distribution containing spherical perovskite particles from added PZT nanopowder and round perovskite particles from the sol-matrix, (≈ 30–50 nm and ≈ 100–120 nm), respectively. Effect of the PZT film preparation method on the morphology of pure and composite PZT thin films deposited on Pt/Al2O3 substrates was evaluated.  相似文献   

10.
希土水杨酸与8─羟基喹啉三元配合物研究   总被引:14,自引:0,他引:14  
合成了六种希土(RE)-水杨酸-8-羟基喹啉三元固体配合物,其通式为RE(Hsal)2,hq(RE=Y,La,Nd,Sm,Ho,Er)。通过元素分析、摩尔电导、IR、Far-IR、UV-Vis、TG-DTA分析,研究了配合物的组成、性质和成键特性。通过抑菌试验表明配合物对于霉菌具有抑真菌能力。  相似文献   

11.
We report here on the preparation of novel luminescent core‐shell material by initial coating with polyelectrolytes and subsequent with a silica shell on the lanthanide complexes loaded zeolite L microcrystals. Lanthanide complexes loaded zeolite L was prepared by insertion of 2‐thenoyltrifluoroacetone (TTA) into the nanochannels of zeolite crystals by gas diffusion of TTA to Eu3+ exchanged zeolite L, coating a silica shell on the lanthanide complexes loaded zeolite L resulted to the novel luminescent core‐shell material. The luminescent core‐shell material was further functionalized with silylated terbium(III) complex and the obtained material was used as the luminescence sensing of dipicolinic acid (DPA), which is a major constituent of many pathogenic spore‐forming bacteria.  相似文献   

12.
ernary europium complex with dibenzoylmethane(DBM), 1,10-phenanthroline(phen) was in-situ syn thesized in thin SiO2/polyvinyl butyral(PVB) hybrid films by a two-step sol-gel process, characterized by means of fluorescence spectroscopy. The luminescence spectra, fluorescence lifetimes, photostability were all investigated. The results showed that the hybrid films exhibited the characteristic emission bands of the central rare earth Eu3+. In addition, Eu3+ presented longer fluorescence lifetime than in an ethanol solution, the complex had a higher photostability in the hybrid film than in the PVB film containing the corresponding pure complex.  相似文献   

13.
《Electroanalysis》2003,15(9):803-811
Ru(II) tris‐bipyridine based ECL sensors were produced by embedding the complex inside silica glass thin films deposited via a sol‐gel dipping procedure on K‐glass conducing substrates. Films were prepared starting from a pre‐hydrolyzed ethanolic solution of Si(OC2H5)4 and Ru(bpy)3Cl2. Transparent, crack‐free and homogeneous reddish silica layers, having a thickness of 200±20 nm, were obtained. The films, either deposited at room temperature or thermally annealed at 100, 200 and 300 °C for 30 h, were structurally and chemically characterized. Ru(bpy)3Cl2 thermal stability was previously checked by thermogravimetric analysis (TGA). The films were investigated by X‐Ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and UV‐vis spectroscopy. XPS in‐depth profiles revealed a homogeneous distribution of the ruthenium complex inside the silica thin layers. SIMS data suggested that the embedded Ru(bpy)3Cl2 did not react with oxygen inside the oxygen‐rich silica matrix to give Ru‐O bonds. Electrochemical and ECL characterization of the thin film electrodes were made by means of cyclic voltammetry (CV) and controlled potential step experiments. The ECL sensor showed a diffusive redox behavior of the Ru(bpy)32+/Ru(bpy)33+ system. Light emission produced from the reaction between oxalic acid and the electrogenerated Ru(bpy)33+ was larger and stable when thermally treated electrodes were used after a suitable hydration period. The 300 °C treated sample was the best performing sensor both in terms of low complex leakage and sensitivity. Calibration plots relative to oxalic acid were obtained both in stationary and in flowing solutions in the concentration range 2×10?6?3×10?4 M. A linear behavior appeared in the former case, while in the latter a slight curvature was evident as a consequence of a finite diffusion time of the analyte inside the thin film. The signal repeatability, obtained by multiple 100 μL of 10?5 M oxalic acid injections in flowing solutions, was better than 4%. The obtained detection limit (computed as three times the standard deviation of the base‐line noise) was 10?6 M as oxalic acid.  相似文献   

14.
Luminescent rare-earth oxyfluoride materials were prepared by a sol-gel method using trifluoroacetic acid as a fluorine source. Crystalline (La, Eu)OF powders and thin films were obtained by heating gels at typically 600–800°C. Transparent SiO2-LaOF glass-ceramic thin films were also prepared by mixing the trifluoroacetate sols and silica sols, spin-coating on silica glass substrates and heating at temperatures 600–900°C. Eu3+ ions doped in the oxyfluoride materials exhibited a strong red 5D0 7F2 emission (611 nm) by a charge-transfer (O2–-Eu3+) excitation with ultra-violet radiation (265 nm). It was strongly suggested that the Eu3+ activators were preferentially incorporated into the crystalline LaOF phase in the SiO2-LaOF glass-ceramics.  相似文献   

15.
Monolayer polystyrene spheres (∼400 nm) array templates were assembled orderly on clean glass substrates by dip-drawing method from emulsion of PS and porous TiO2 thin films were prepared by using sol-dipping template method to fill TiO2 sol into the interstices among the close-packed PS templates and then annealing to remove the PS templates. The effects of TiO2 precursor sol concentration and dipping time in sol on the porous structure of the thin films were studied. The results showed pore size of the ordered TiO2 porous thin film depended mainly on PS size and partly on TiO2 sol concentration. The shrinkage of pore diameter was about 10% for 0.2 M and 20% for 0.4 M TiO2 sol concentrations. X-ray diffraction (XRD) spectra indicated the porous thin film was anatase structure. The transmittance spectrum showed that optical transmittance of the porous thin film kept above 70% beyond the wavelength of 430 nm. Optical band-gap of the porous TiO2 thin film (fired at 550∘;C) was 3.12 eV.  相似文献   

16.
Two silica-based organic-inorganic hybrid materials composed of phenol (PHE) and ethyl-p-hydroxybenzoate derivatives (abbreviated as EPHBA) complexes were prepared via a sol-gel process. The active hydroxyl groups of PHE/EPHBA grafted by 3-(triethoxysilyl)-propyl isocyanate (TESPIC) through hydrogen transfer reaction were used as multi-functional bridged components, which can coordinate to Tb3+ with carbonyl groups, strongly absorb ultraviolet and effectively transfer energy to Tb3+ through their triplet excited state, as well as undergo polymerization or crosslinking reactions with tetraethoxysilane (TEOS), for anchoring terbium ions to the silica backbone. For comparison, two doped hybrid materials in which rare-earth complexes were just encapsulated in silica-based sol-gel matrices were also prepared. NMR, FT-IR, UV/vis absorption and luminescence spectroscopy were used to investigate the obtained hybrid materials. UV excitation in the organic component resulted in strong green emission from Tb3+ ions due to an efficient ligand-to-metal energy transfer mechanism.  相似文献   

17.
The characterization of physicochemical properties of the internal environment of sol-gel thin films is required for understanding and designing applications in optical biosensors. We have investigated the dip coated tetraethyl-orthosilicate (TEOS) derived sol-gel thin films deposited on microscopic glass cover slips using molar ratio (water or ethanol / TEOS) R=32 using fluorescence spectroscopic measurements (emission, lifetime and anisotropy) on entrapped fluorescent probes. The effect of water and/or ethanol was studied as a function of storage (60 days) using fluorescent probes Hoechst 33258 (H258) and Pyranine (PY). Distribution of fluorescent probes in thin film was studied using confocal microscope. Emission maxima of H258 entrapped thin films from sol prepared using water as solvent showed emission maximum at 503 nm indicating the presence of water like environment which did not change during storage. On the contrary, PY entrapped thin films depicted emission bands at 434 nm and 513 nm, characteristics of ethanol and water respectively, up to the first few weeks and then the band at 434 nm prevailed (60 days), suggesting heterogeneous internal environment. Thin films from sol prepared using ethanol as solvent showed presence of ethanol through out storage. Fluorescence lifetime data of these probes in both sol-gel and thin films also suggested presence of heterogeneous internal environment. Thin films prepared from sol-gel using water as solvent suggested release of ethanol in the pores during hydrolysis and condensation reaction, which were clearly indicated by PY. The effect of sodium phosphate buffer was also studied in sol-gel and thin films. The results of these measurements showed that both the probes H258 and PY could be used effectively in monitoring the physicochemical properties of internal environment of thin films and sol-gel as a function of storage.  相似文献   

18.
推导了用改进的RD496-III型微热量计测定固态物质比热容的计算式. 用Joule 效应确定了仪器在298.15 K时的量热常数和相对标准偏差分别为(63.901±0.030) μV•mW-1和0.08%, 用Peltier效应测定总不平衡热. 在该仪器上测定的两种标准物质(基准苯甲酸和α-Al2O3)比热容的计算值与文献值相差在0.4%以内. 用本法测定了13种固态配合物RE(PDC)3(phen) (RE=La, Pr, Nd, Sm~Lu; PDC= )的比热容值, 总偏差在1.0%, 与稀土原子序数ZRE作图呈现“三分组现象”, 说明配合物中RE3+与配体间的化学键有一定程度的共价性, 显示了稀土离子4f电子云的扩大效应.  相似文献   

19.
(LiCl)2-Al2O3-SiO2 thin film solid electrolyte was prepared by a sol-gel process with a spin coating technique. The thin film was studied by X-ray photoelectron spectroscopy (XPS) and ac impedance. The ionic conductivity of the solid electrolyte film is comparable to that of the bulk xerogel. The highest conductivity measured by ac impedance is 2.5×10–4 S·cm–1 at 300°C with Ea=0.75 eV.  相似文献   

20.
Within the framework of the development of an optical immunosensor, the sol-gel process has been used to prepare a thin film of amorphous silica, deposited by spin coating on a gold-coated glass slide, and possessing chemically active functional groups (SH, NH2...). After activation of the sol-gel film in aqueous buffers by a bifunctional coupling agent, biological molecules such as antibodies could be covalently bonded on or inside the sol-gel film. Therefore, the behavior in aqueous solutions of the functionalized silica thin films has been analysed by Surface Plasmon Resonance (SPR) and guided wave propagation. Results show a modification of the thickness and of the refractive index of the silica film. Pore size range has been deduced by the infiltration of different molecular weight dextran molecules diluted in water into the sol-gel material. Immunosassays have demonstrated biological activity of antibodies which are covalently linked to or entraped in the sol-gel film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号