首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
Proliferation and migration of vascular smooth muscle cells (VSMCs) are involved in the processes of atherosclerosis and restenosis. The protein product of the growth arrest-specific gene 6 (Gas-6) has recently been identified as a ligand for the Axl/Rse/Mer tyrosine kinase receptor family, which may be involved in proliferation and migration of VSMCs. Here we show that Gas-6 gene expression is increased in proliferating VSMCs in tissue culture (2.5-fold increase by Northern blot) and following neointimal proliferation in a rabbit balloon-injury model (3-fold increase by Western blot). Neither platelet-derived growth factor (PDGF) nor thrombin stimulate the expression of Gas-6 in cultured VSMCs despite the ability of the PDGF, but not thrombin, to stimulate proliferation in growth-arrested cells. These data suggest a role for the Gas-6 regulatory system in VSMC proliferation, which may be a target for therapeutic interventions in the atherosclerotic process and restenosis after angioplasty.  相似文献   

2.
Angiotensin II is a major effector molecule in the development of cardiovascular disease. In vascular smooth muscle cells (VSMCs), angiotensin II promotes cellular proliferation and extracellular matrix accumulation through the upregulation of plasminogen activator inhibitor-1 (PAI-1) expression. Previously, we demonstrated that small heterodimer partner (SHP) represses PAI-1 expression in the liver through the inhibition of TGF-β signaling pathways. Here, we investigated whether SHP inhibited angiotensin II-stimulated PAI-1 expression in VSMCs. Adenovirus-mediated overexpression of SHP (Ad-SHP) in VSMCs inhibited angiotensin II- and TGF-β-stimulated PAI-1 expression. Ad-SHP also inhibited angiotensin II-, TGF-β- and Smad3-stimulated PAI-1 promoter activity, and angiotensin II-stimulated AP-1 activity. The level of PAI-1 expression was significantly higher in VSMCs of SHP-/- mice than wild type mice. Moreover, loss of SHP increased PAI-1 mRNA expression after angiotensin II treatment. These results suggest that SHP inhibits PAI-1 expression in VSMCs through the suppression of TGF-β/Smad3 and AP-1 activity. Thus, agents that target the induction of SHP expression in VSMCs might help prevent the development and progression of atherosclerosis.  相似文献   

3.
Investigating the therapeutic effect of genistein (Gen) on postmenopausal senile vaginitis (SV) and its mechanism of action. Adult SPF female Wistar rats were selected to establish a bilateral ovariectomized animal model (OVX), which simulated senile vaginitis dominated by estrogen deficiency in ovarian dysfunction. After 14 days of continuous treatment, the morphology of vaginal epithelial tissue was observed and various types of epithelial cells were counted, and the body mass and uterine and vaginal index of rats were measured. the levels of vaginal tissue secretion, microorganism, hormone and glycogen in each group were measured and the reproductive health was evaluated clinically. The protein expression and mRNA expression of epidermal growth factor (EGF) and E-cadherin (E-cadherin) in vaginal tissues were detected by immunohistochemistry and RT-PCR, respectively. Result showed that Genistein lowered vaginal pH, increased vaginal index and vaginal health score, thickened epithelial layers and improved vaginal tissue atrophy after administration. Genistein also increased the contents of glycogen and Lactobacillus in vagina, and promoted the expression of EGF, E-cadherin protein and mRNA. To sum up, there is no significant change in serum E2 and FSH levels, indicating that genistein has no effect on hormone levels in rats. genistein promoted the proliferation of vaginal epithelial cells, thickened epithelial layers and the vaginal wall, which improved the resistance of vaginal epithelium, the recovery of self-cleaning ability and healed the vaginal wound and erosive surface to improve atrophy.  相似文献   

4.
5.
6.
Cannabidiol (CBD) is a plant-derived compound with antioxidant and anti-inflammatory properties. Pulmonary hypertension (PH) is still an incurable disease. CBD has been suggested to ameliorate monocrotaline (MCT)-induced PH, including reduction in right ventricular systolic pressure (RVSP), a vasorelaxant effect on pulmonary arteries and a decrease in the white blood cell count. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on the parameters of oxidative stress and inflammation in the lungs of rats with MCT-induced PH. In MCT-induced PH, we found a decrease in total antioxidant capacity (TAC) and glutathione level (GSH), an increase in inflammatory parameters, e.g., tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and cluster of differentiation 68 (CD68), and the overexpression of cannabinoid receptors type 1 and 2 (CB1-Rs, CB2-Rs). Administration of CBD increased TAC and GSH concentrations, glutathione reductase (GSR) activity, and decreased CB1-Rs expression and levels of inflammatory mediators such as TNF-α, IL -1β, NF-κB, MCP-1 and CD68. In conclusion, CBD has antioxidant and anti-inflammatory effects in MCT-induced PH. CBD may act as an adjuvant therapy for PH, but further detailed preclinical and clinical studies are recommended to confirm our promising results.  相似文献   

7.
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.  相似文献   

8.
Recent epidemiologic studies clearly showed that early intensive glucose control has a legacy effect for preventing diabetic macrovascular complications. However, the cellular and molecular processes by which high glucose leads to macrovascular complications are poorly understood. Vascular smooth muscle cell (VSMC) dysfunction due to high glucose is a characteristic of diabetic vascular complications. Activation of nuclear factor-κB (NF-κB) may play a key role in the regulation of inflammation and proliferation of VSMCs. We examined whether VSMC proliferation and plasminogen activator inhibitor-1 (PAI-1) expression induced by high glucose were mediated by NF-κB activation. Also, we determined whether selective inhibition of NF-κB would inhibit proliferation and PAI-1 expression in VSMCs. VSMCs of the aorta of male SD rats were treated with various concentrations of glucose (5.6, 11.1, 16.7, and 22.2 mM) with or without an inhibitor of NF-κB or expression of a recombinant adenovirus vector encoding an IκB-α mutant (Ad-IκBαM). VSMC proliferation was examined using an MTT assay. PAI-1 expression was assayed by real-time PCR and PAI-1 protein in the media was measured by ELISA. NF-κB activation was determined by immunohistochemical staining, NF-κB reporter assay, and immunoblotting. We found that glucose stimulated VSMC proliferation and PAI-1 expression in a dose-dependent manner up to 22.2 mM. High glucose (22.2 mM) alone induced an increase in NF-κB activity. Treatment with inhibitors of NF-κB such as MG132, PDTC or expression of Ad-IκB-αM in VSMCs prevented VSMC proliferation and PAI-1 expression induced by high glucose. In conclusion, inhibition of NF-κB activity prevented high glucose-induced VSMC proliferation and PAI-1 expression.  相似文献   

9.
Proliferation and migration of vascular smooth muscle cells (VSMCs) are critical events in the initiation and development of restenosis upon percutaneous transluminal coronary angioplasty (PTCA). Polyphenols have been suggested to ameliorate post-angioplasty restenosis. Salvianolic A (SalA) is one of the most abundant polyphenols extracted from salvia. In this study, we investigated the effect of salvianolic A (SalA) on the migration and proliferation of VSMCs. We found a preferential interaction of SalA with cellular systems that rely on the PDGF signal, but not on the EGF and bFGF signal. SalA inhibits PDGF-BB induced VSMC proliferation and migration in the concentration range from 0.01 to 0.1 μM. The inhibition of SalA on VSMC proliferation is associated with cell cycle arrest. We also found that SalA inhibits the PDGFRβ-ERK1/2 signaling cascade activated by PDGF-BB in VSMCs. In addition, SalA does not influence the proliferation of endothelial cells, the synthesis of NO and eNOS protein expression. Our results suggest that SalA inhibits migration and proliferation of VSMCs induced by PDGF-BB via the inhibition of the PDGFRβ-ERK1/2 cascade, but that it does not constrain endothelial cell proliferation and nitric oxide biosynthesis. Thus, the present study suggests a novel adjunct pharmacological strategy to prevent angioplasty-related restenosis.  相似文献   

10.
Pulmonary fibrosis is a progressive and lethal lung disease characterized by the proliferation and differentiation of lung fibroblasts and the accumulation of extracellular matrices. Since pulmonary fibrosis was reported to be associated with adenosine monophosphate-activated protein kinase (AMPK) activation, which is negatively regulated by cereblon (CRBN), we aimed to determine whether CRBN is involved in the development of pulmonary fibrosis. Therefore, we evaluated the role of CRBN in bleomycin (BLM)-induced pulmonary fibrosis in mice and in transforming growth factor-beta 1 (TGF-β1)-induced differentiation of human lung fibroblasts. BLM-induced fibrosis and the mRNA expression of collagen and fibronectin were increased in the lung tissues of wild-type (WT) mice; however, they were significantly suppressed in Crbn knockout (KO) mice. While the concentrations of TGF-β1/2 in bronchoalveolar lavage fluid were increased via BLM treatment, they were similar between BLM-treated WT and Crbn KO mice. Knockdown of CRBN suppressed TGF-β1-induced activation of small mothers against decapentaplegic 3 (SMAD3), and overexpression of CRBN increased it. TGF-β1-induced activation of SMAD3 increased α-smooth muscle actin (α-SMA) and collagen levels. CRBN was found to be colocalized with AMPKα1 in lung fibroblasts. CRBN overexpression inactivated AMPKα1. When cells were treated with metformin (an AMPK activator), the CRBN-induced activation of SMAD3 and upregulation of α-SMA and collagen expression were significantly suppressed, suggesting that increased TGF-β1-induced activation of SMAD3 via CRBN overexpression is associated with AMPKα1 inactivation. Taken together, these data suggest that CRBN is a profibrotic regulator and maybe a potential target for treating lung fibrosis.Subject terms: Pathogenesis, Biochemistry  相似文献   

11.
In order to prevent restenosis after angioplasty or stenting, one of the most popular targets is suppression of the abnormal growth and excess migration of vascular smooth muscle cells (VSMCs) with drugs. However, the drugs also adversely affect vascular endothelial cells (VECs), leading to the induction of late thrombosis. We have investigated the effect of epigallocatechin-3-gallate (EGCG) on the proliferation and migration of VECs and VSMCs. Both cells showed dose-dependent decrease of viability in response to EGCG while they have different IC(50) values of EGCG (VECs, 150 mM and VSMCs, 1050 mM). Incubating both cells with EGCG resulted in significant reduction in cell proliferation irrespective of cell type. The proliferation of VECs were greater affected than that of VSMCs at the same concentrations of EGCG. EGCG exerted differential migration-inhibitory activity in VECs vs. VSMCs. The migration of VECs was not attenuated by 200 mM EGCG, but that of VSMCs was significantly inhibited at the same concentration of EGCG. It is suggested that that EGCG can be effectively used as an efficient drug for vascular diseases or stents due to its selective activity, completely suppressing the proliferation and migration of VSMCs, but not adversely affecting VECs migration in blood vessels.  相似文献   

12.
13.
P21-activated kinases (PAKs) are serine/threonine protein kinases that contribute to several cellular processes. Here, we aimed to determine the prognostic value of PAK1 and its correlation with the clinicopathological characteristics and five-year survival rates in patients with non-small cell lung cancer (NSCLC). We evaluated PAK1 mRNA and protein expression in NSCLC cells and resected tumor specimens, as well as in healthy human bronchial epithelial cells and adjacent healthy lung tissues, respectively, for effective comparison. Immunohistochemical tissue microarray analysis of 201 NSCLC specimens showed the correlation of PAK1 expression with clinicopathological characteristics. The mRNA and protein expression of PAK1 were 2.9- and 4.3-fold higher in six of seven NSCLC cell types and human tumors (both, p < 0.001) than in healthy human bronchial epithelial BEAS-2B cells and adjacent healthy lung tissues, respectively. Decreased survival was significantly associated with PAK1 overexpression in the entire cohort (χ2 = 8.48, p = 0.0036), men (χ2 = 17.1, p < 0.0001), and current and former smokers (χ2 = 19.2, p < 0.0001). Notably, epidermal growth factor receptor (EGFR) mutation-positive lung cancer patients with high PAK1 expression showed higher mortality rates than those with low PAK1 expression (91.3% vs. 62.5%, p = 0.02). Therefore, PAK1 overexpression could serve as a molecular target for the treatment of EGFR mutation-positive lung cancer, especially among male patients and current/former smokers.  相似文献   

14.
The current hypothesis of alveolar capillary membrane dysfunction fails to completely explain the severe and persistent leak of protein-rich fluid into the pulmonary interstitium, seen in the exudative phase of acute lung injury (ALI). The presence of intact red blood cells in the pulmonary interstitium may suggest mechanical failure of pulmonary arterioles and venules. These studies involved the pathological and ultrastructural evaluation of the pulmonary vasculature in Staphylococcal enterotoxin B (SEB)-induced ALI. Administration of SEB resulted in a significant increase in the protein concentration of bronchoalveolar lavage fluid and vascular leak in SEB-exposed mice compared to vehicle-treated mice. In vivo imaging of mice demonstrated the pulmonary edema and leakage in the lungs of SEB-administered mice. The histopathological studies showed intense clustering of inflammatory cells around the alveolar capillaries with subtle changes in architecture. Electron microscopy studies further confirmed the diffuse damage and disruption in the muscularis layer of the terminal vessels. Cell death in the endothelial cells of the terminal vessels was confirmed with TUNEL staining. In this study, we demonstrated that in addition to failure of the alveolar capillary membrane, disruption of the pulmonary arterioles and venules may explain the persistent and severe interstitial and alveolar edema.  相似文献   

15.
Neointimal proliferation after vascular injury is a key mechanism of restenosis, a major cause of percutaneous transluminal angioplasty failure and artery bypass occlusion. Emodin, an anthraquinone with multiple physiological activities, has been reported to inhibit proliferation of vascular smooth muscle cells (VSMCs) that might cause intimal arterial thickening. Thus, in this study, we established a rat model of balloon-injured carotid artery and investigated the therapeutic effect of emodin and its underlying mechanism. Intimal thickness was analyzed by hematoxylin and eosin staining. Expression of Wnt4, dvl-1, β-catenin and collagen was determined by immunohistochemistry and/or western blotting. The proliferation of VSMC was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and electron microscopy. MicroRNA levels were quantified by real-time quantitative PCR. Emodin relieved injury-induced artery intimal thickness. Results of western blots and immunohistochemistry showed that emodin suppressed expression of signaling molecules Wnt4/Dvl-1/β-catenin as well as collagen protein in the injured artery. In addition, emodin enhanced expression of an artery injury-related microRNA, miR-126. In vitro, MTT assay showed that emodin suppressed angiotensin II (AngII)-induced proliferation of VSMCs. Emodin reversed AngII-induced activation of Wnt4/Dvl-1/β-catenin signaling by increasing expression of miR-126 that was strongly supported by transfection of mimic or inhibitor for miR-126. Emodin prevents intimal thickening via Wnt4/Dvl-1/β-catenin signaling pathway mediated by miR-126 in balloon-injured carotid artery of rats.  相似文献   

16.
17.
Molecular mechanism of lung carcinogenesis and its aggressive nature is still largely elusive. To uncover the biomarkers related with tumorigenesis and behavior of lung cancer, we screened novel differentially expressed genes (DEG) in A549 lung cancer cell line by comparison with CCD-25Lu, normal pulmonary epithelial cell line, using annealing control primer(ACP)-based GeneFishing system. Of the DEGs, over-expression of leucyl-tRNA synthetase 1 (LARS1) was prominent and this up-regulation was confirmed by immunoblotting and real-time quantitative RT-PCR analysis. In addition to A549 cell line, primary lung cancer tissues also expressed higher level of LARS1 mRNA than their normal counter tissues. To explore the oncogenic potential of LARS1 over-expression in lung cancer, we knocked-down LARS1 by treating siRNA and observed the tumor behavior. LARS1 knock-down cells showed reduced ability to migrate through transwell membrane and to form colonies in both soft agar and culture plate. Taken together, these findings suggest that LARS1 may play roles in migration and growth of lung cancer cells, which suggest its potential implication in lung tumorigenesis.  相似文献   

18.
19.
Direct administration of drugs and genes to the lungs by pulmonary delivery offers a potential effective therapy for lung cancers.In this study,combined doxorubicin(DOX)and Bcl2 siRNA was employed for cancer therapy using polyethylenimine(PEI)as the carrier of Bcl2 siRNA.Most of the DOX and siRNA possessed high cellular uptake efficiency in B16F10 cells,which was proved by FCM and CLSM analysis. Real-time PCR showed that PEI/Bcl2 siRNA exhibited high gene silencing efficiency with 70% Bcl2 mRNA being knocked down.The combination of DOX and siRNA could enhance the cell proliferation inhibition and the cell apoptosis against B16F10 cells compared to free DOX or PEI/Bcl2 siRNA.Furthermore,the biodistribution of DOX and siRNA via pulmonary administration was studied in mice with B16F10 metastatic lung cancer.The results showed that most of the DOX and siRNA were accumulated in lungs and lasted at least for 3 days,which suggested that combined DOX and siRNA by pulmonary administration may have high anti-tumor effects for metastatic lung cancer treatment in vivo.  相似文献   

20.
Advanced glycation endproducts (AGEs)-induced vascular smooth muscle cell (VSMCs) proliferation and formation of reactive oxygen species (ROS) are emerging as one of the important mechanisms of diabetic vasculopathy but little is known about the antioxidative action of HMG CoA reductase inhibitor (statin) on AGEs. We hypothesized that statin might reduce AGEs-induced intracellular ROS of VSMCs and analyzed the possible mechanism of action of statin in AGEs-induced cellular signaling. Aortic smooth muscle cell of Sprague-Dawley rat (RASMC) culture was done using the different levels of AGEs stimulation in the presence or absence of statin. The proliferation of RASMC, ROS formation and cellular signaling was evaluated and neointimal formation after balloon injury in diabetic rats was analyzed. Increasing concentration of AGEs stimulation was associated with increased RASMC proliferation and increased ROS formation and they were decreased with statin in a dose-dependent manner. Increased NF-κB p65, phosphorylated ERK, phosphorylated p38 MAPK, cyclooxygenase-2, and c-jun by AGEs stimulation were noted and their expression was inhibited by statin. Neointimal formation after balloon injury was much thicker in diabetic rats than the sham-treated group but less neointimal growth was observed in those treated with statin after balloon injury. Increased ROS formation, subsequent activation of MAPK system and increased VSMC proliferation may be possible mechanisms of diabetic vasculopathy induced by AGEs and statin may play a key role in the treatment of AGEs-induced diabetic atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号