首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extension of the new standard model, by introducing a mixing of the low mass “active” neutrinos with heavy ones, or by any model with lepton flavor violation, is considered. This leads to non-orthogonal neutrino production and detection states and to modifications of neutrino oscillations in both vacuum and matter. The possibility of the discovery of such effects in current and future neutrino oscillation experiments is discussed. First order approximation formulas for the flavor transition probabilities in constant density matter, for all experimentally available channels, are given. Numerical calculations of flavor transition probabilities for two sets of new physics parameters describing a single “effective” heavy neutrino state, both satisfying present experimental constraints, have been performed. Two energy ranges and several baselines, assuming both the current (±2σ) and the expected future errors (±3%) of the neutrino oscillation parameters are considered, keeping their present central values. It appears that the biggest potential of the discovery of the possible presence of any new physics is pronounced in oscillation channels in which νe and ν are not involved at all, especially for two baselines, L=3000 km and L=7500 km, which for other reasons are also called “magic” for future Neutrino Factory experiments. PACS 13.15.+g; 14.60.Pq; 14.60.St  相似文献   

2.
We shall proceed with the construction of normalizable Dirac wave packets for fermionic particles (neutrinos) with dynamics governed by a “modified” Dirac equation with a non-minimal coupling with an external magnetic field. We are not only interested on the analytic solutions of the “modified” Dirac wave equation but also on the construction of Dirac wave packets which can be used for describing the dynamics of some observable physical quantities which are relevant in the context of the quantum oscillation phenomena. To conclude, we discuss qualitatively the applicability of this formal construction in the treatment of chiral (and flavor) oscillations in the theoretical context of neutrino physics. PACS numbers: 02.30.Cj, 03.65.Pm  相似文献   

3.
Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the “same energy” and “same momentum” assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the “same energy” vs. “same momentum” problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations. The text was submitted by the authors in English.  相似文献   

4.
A widely adopted theoretical scheme to account for the neutrino oscillation phenomena is the see-saw mechanism together with the “lopsided” mass matrices, which is generally realized in the framework of supersymmetric grand unification. We will show that this scheme leads to large lepton flavor violation at low energy if supersymmetry is broken at the GUT or Planck scale. Especially, the branching ratio of already exceeds the present experimental limit. We then propose a phenomenological model which can account for the LMA solution to the solar neutrino problem and at the same time predict a branching ratio of below the present limit. Received: 18 November 2002 / Published online: 14 February 2003  相似文献   

5.
We have analyzed the most recent available Super-Kamiokande data in a three flavor neutrino oscillation model. We have here neglected possible matter effects and we performed a fit to atmospheric and solar Super-Kamiokande data. We have investigated a large parameter range where the mixing angles were restricted to , , and the mass squared differences were taken to be in the intervals and , i.e., the hierarchy between the mass squared differences is not completely determined. This yielded a best solution characterized by the parameter values , , , , and , which shows that the analyzed experimental data speak in favor of a bimaximal mixing scenario with one of the mass squared differences in the “just-so” domain and the other one in the range capable of providing a solution to the atmospheric neutrino problem. Received: 4 July 2000 / Published online: 27 October 2000  相似文献   

6.
We consider the non-standard matter effect in flavor conversion of neutrinos crossing the core of the Earth. We show that oscillations of core-crossing neutrinos with E≳0.5 GeV can well be described by first order perturbation theory. We show that due to the non-standard matter effect a varying chemical composition in the Earth can modify the neutrino flavor conversion by 100%. The effects of CP violating phases in non-standard neutral current interactions are emphasized in particular.  相似文献   

7.
A special Majorana model for three neutrino flavors is developed on the basis of the Pauli transformation group. In this model, the neutrinos possess a partially conserved generalized lepton (Pauli) charge that makes it possible to discriminate between neutrinos of different type. It is shown that, within the model in question, a transition from the basic “mass” representation, where the average value of this charge is zero, to the representation associated with physical neutrinos characterized by specific Pauli “flavor” charges establishes a relation between the neutrino mixing angles θ mix, 12, θ mix, 23, and θ mix, 13 and an additional relation between the Majorana neutrino masses. The Lagrangian mass part, which includes a term invariant under Pauli transformations and a representation-dependent term, concurrently assumes a “quasi-Dirac” form. With allowance for these relations, the existing set of experimental data on the features of neutrino oscillations makes it possible to obtain quantitative estimates for the absolute values of the neutrino masses and the 2β-decay mass parameter m ββ and a number of additional constraints on the neutrino mixing angles.  相似文献   

8.
Non-standard physics which can be described by effective four fermion interactions may be an additional source of CP violation in the neutrino propagation. We discuss the detectability of such a CP violation at a neutrino factory. We assume the current baseline setup of the international design study of a neutrino factory (IDS-NF) for the simulation. We find that the CP violation from certain non-standard interactions is, in principle, detectable significantly below their current bounds – even if there is no CP violation in the standard oscillation framework. Therefore, a new physics effect might be mis-interpreted as the canonical Dirac CP violation, and a possibly even more exciting effect might be missed.  相似文献   

9.
We study the Planck scale effects in the neutrino sector on the asymmetry between T-conjugate oscillation probabilities. ΔP T =P α →ν β )−P β →ν α ), in a three flavor neutrino mixing. In this paper, we discuss some aspect of T violation effects in three flavor neutrino oscillation.  相似文献   

10.
We have recently constructed a many-body theory for composite excitons, in which the possible carrier exchanges between N excitons can be treated exactly through a set of dimensionless “Pauli scatterings” between two excitons. Many-body effects with free excitons turn out to be rather simple because these excitons are the exact one-pair eigenstates of the semiconductor Hamiltonian, in the absence of localized traps. They consequently form a complete orthogonal basis for one-pair states. As essentially all quantum particles known as bosons are composite bosons, it is highly desirable to extend this free exciton many-body theory to other kinds of “cobosons” — a contraction for composite bosons — the physically relevant ones being possibly not the exact one-pair eigenstates of the system Hamiltonian. The purpose of this paper is to derive the “Pauli scatterings” and the “interaction scatterings” of these cobosons in terms of their wave functions and the interactions which exist between the fermions from which they are constructed. It is also explained how to calculate many-body effects in such a very general composite boson system.  相似文献   

11.
We investigate non-standard neutrino interactions (NSIs) in the Zee–Babu model. The size of NSIs predicted by this model is obtained from a full scan over the parameter space, taking into account constraints from low-energy experiments such as searches for lepton flavor violation (LFV) and the requirement to obtain a viable neutrino mass matrix. The dependence on the scale of new physics as well as on the type of the neutrino mass hierarchy is discussed. We find that NSIs at the source of a future neutrino factory may be at an observable level in the νeντ and/or νμντ channels. In particular, if the doubly charged scalar of the model has a mass in reach of the LHC and if the neutrino mass hierarchy is inverted, a highly predictive scenario is obtained with observable signals at the LHC, in upcoming neutrino oscillation experiments, in LFV processes, and for NSIs at a neutrino factory.  相似文献   

12.
We analyse, within the “flavoured” leptogenesis scenario of baryon asymmetry generation, the interplay of “low energy” CP-violation, originating from the PMNS neutrino mixing matrix U, and “high energy” CP-violation, which can be present in the matrix of neutrino Yukawa couplings, λ, and can manifest itself only in “high” energy scale processes. The type I see-saw model with three heavy right-handed Majorana neutrinos having a hierarchical spectrum is considered. The “orthogonal” parameterisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix R, is employed. In this approach the matrix R is the source of “high energy” CP-violation. Results for normal hierarchical (NH) and inverted hierarchical (IH) light neutrino mass spectrum are derived in the case of decoupling of the heaviest right-handed Majorana neutrino. It is shown that taking into account the contribution to Y B due to the CP-violating phases in the neutrino mixing matrix U can change drastically the predictions for Y B , obtained assuming that only “high energy” CP-violation from the R-matrix is operative in leptogenesis. In the case of the IH spectrum, in particular, there exist significant regions in the corresponding parameter space where the purely “high energy” contribution in Y B plays a subdominant role in the production of baryon asymmetry compatible with the observations. Also at Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.  相似文献   

13.
Srubabati Goswami 《Pramana》2003,60(2):261-278
Neutrino oscillation, in which a given flavor of neutrino transforms into another is a powerful tool for probing small neutrino masses. The intrinsic neutrino properties involved are neutrino mass squared difference Δm 2 and the mixing angle in vacuum θ. In this paper I will summarize the progress that we have achieved in our search for neutrino oscillation with special emphasis on the recent results from the Sudbury Neutrino Observatory (SNO) on the measurement of solar neutrino fluxes. I will outline the current bounds on the neutrino masses and mixing parameters and discuss the major physics goals of future neutrino experiments in the context of the present picture.  相似文献   

14.
We report about an analytic study involving the intermediate wave packet formalism for quantifying the physically relevant information which appears in the neutrino two-flavor conversion formula and helping us to obtain more precise limits and ranges for neutrino flavor oscillation. By following the sequence of analytic approximations where we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy, we point out a residual time-dependent phase which, coupled with the spreading/slippage effects, can subtly modify the neutrino-oscillation parameters and limits. Such second-order effects are usually ignored in the relativistic wave packet treatment, but they present an evident dependence on the propagation regime so that some small modifications to the oscillation pattern, even in the ultra-relativistic limit, can be quantified. These modifications are implemented in the confrontation with the neutrino-oscillation parameter range (mass-squared difference Δm2 and the mixing angle θ) where we assume the same wave packet parameters previously noticed in the literature in a kind of toy model for some reactor experiments. Generically speaking, our analysis parallels the recent experimental purposes which are concerned with higher precision parameter measurements. To summarize, we show that the effectiveness of a more accurate determination of Δm2 and θ depends on the wave packet width a and on the averaged propagating energy flux Ē which still correspond to open variables for some classes of experiments. PACS 02.30.Mv; 03.65.Pm; 14.60.Pq  相似文献   

15.
16.
Assuming that the actual neutrino puzzles (solar, atmospheric, and providing the HDM of the Universe) are real, and that their “standard” theoretical explanations are implemented by Nature, we propose a natural scenario for generating the required neutrino mass texture. We suppose the existence of a mirror world with the same Standard Model group structure and particle content for both the ordinary and the mirror world. The various one-loop neutrino masses are evaluated and are found to give a good overall agreement with the phenomenologically required values. This work was supported by the Algerian Ministry of Education and Scientific Research under contract D2501/51/95.  相似文献   

17.
We highlight some features of pseudo-Hermitian matrices admitting exceptional points. Starting from these general considerations we discuss a fermionic time-reversal violating pseudo-Hermitian Hamiltonian which breaks diagonalizability for some critical parameter values. Partially supported by PRIN “Sintesi”. Presented at the 3rd International Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics”, Istanbul, Turkey, June 20–22, 2005.  相似文献   

18.
We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This “minimal” inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.  相似文献   

19.
Very soon a new generation of reactor and accelerator neutrino oscillation experiments—Double Chooz, Daya Bay, Reno and T2K—will seek for oscillation signals generated by the mixing parameter θ13. The knowledge of this angle is a fundamental milestone to optimize further experiments aimed at detecting CP violation in the neutrino sector. Leptonic CP violation is a key phenomenon that has profound implications in particle physics and cosmology but it is clearly out of reach for the aforementioned experiments. Since late 90’s, a worldwide activity is in progress to design facilities that can access CP violation in neutrino oscillation and perform high precision measurements of the lepton counterpart of the Cabibbo-Kobayashi-Maskawa matrix.  相似文献   

20.
We study systematically the general properties of theB-extension of any integrable model and its properties as Hamiltonian structures etc. We clarify the origin of “exotic” changes in such models. We show that in such models there exist at least two sets of non-local conserved charges and that the “exotic” charges are part of this non-local charge hierarchy. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号