首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.  相似文献   

2.
The permeability tensor of a fractured reservoir, which will typically be anisotropic because of the presence of stress, is an important parameter to be taken into account when formulating a production strategy for the reservoir. Extensive computational effort is involved in calculating the permeabilities of model fracture systems by solving the fluid flow equations through finite realisations of the systems, and this renders a search for alternative techniques worthwhile. An attractive approach is to perform a rough mapping of the fracture system onto a lattice so that effective medium theory can be applied. For isotropic systems that are well-connected, this technique works well, but it gives increasingly poor results as the degree of anisotropy increases. In this contribution, a refinement of the lattice mapping is presented that incorporates an important aspect of the randomness present in the original system. This greatly increases the applicability of the technique.  相似文献   

3.
We consider an infinite square-cell lattice of elastic beams with a semi-infinite crack. Symmetric and antisymmetric bending modes of fracture under remote loads are examined. The related long-wave asymptotes corresponding to a continuous anisotropic bending plate are also considered. In the latter model, the symmetric mode is characterized by the square-root type singularity, whereas the antisymmetric mode results in a hyper-singular field. A solution for the continuous plate with a finite crack is also presented. These closed-form continuous solutions describe the fields in the whole plane. The main goal is to establish analytical connections between the ‘macrolevel’ state, defined by the continuous asymptote of the lattice solution, and the maximal bending moment in the crack-front beam, that is, to determine the resistance of the lattice with an initial crack to the crack advance. The solutions are obtained in the same way as for mass-spring lattices. Considering the static problems we use the discrete Fourier transform and the Wiener-Hopf technique. Monotonically distributed bending moments ahead of the crack are determined for the symmetric mode, and a self-equilibrated transverse force distribution is found for the antisymmetric mode. It is shown that in the latter case only the crack-front beam resists to the fracture development, whereas the forces in the other beams facilitate the fracture. In this way, the macrolevel fracture energy is determined in terms of the material strength. The macrolevel energy release is found to be much greater than the critical strain energy of the beam, especially in the hyper-singular mode. In both problems, it is found that among the beams surrounding the crack the crack-front beam is maximally stressed, and hence its strength defines the strength of the structure.  相似文献   

4.
Various collision and velocity models of the lattice Boltzmann model (LBM) were compared to determine their effects on the efficiency of a three-dimensional homogeneous isotropic decaying turbulent flow simulation. We determined that a decrease in the number of velocities, in particular, 13-velocities, which can be used in the quasi-equilibrium lattice Boltzmann and in the multiple-relaxation time models (MRT), could considerably decrease the computational effort. However, decreasing the number of velocities deteriorates the stability and the accuracy of the results. By comparing the collision models, we also determined that the stability of the entropic lattice Boltzmann model (ELBM), and 19- and 27- velocity MRT is much higher than in other models. However, the numerical viscosity introduced by the ELBM underestimates the enstrophy, and the computational effort increases because of the calculation overhead required to solve the additional equations if special care is not given to the calculation.  相似文献   

5.
《工业建筑可靠性鉴定标准》(GB 50144)给出了既有工业建筑鉴定评级的具体方法。传统的校核方法是以一般民用建筑荷载组合,考虑十余种典型构件在各等级界限下的可靠指标平均值。本文在考虑工业建筑可变作用概率模型的基础上,校核工业建筑可靠性鉴定标准中各等级界限值所对应的典型构件(吊车梁、排架柱、楼面板、屋架)不同受力状态下的可靠指标,准确揭示鉴定分级可靠度控制水平,并与传统校核结果进行对比。结果表明:不考虑工业建筑可变作用概率模型的校核结果,使得以GB 50144为基础的鉴定评级对吊车梁、排架柱和屋架来讲误差稍大,导致实际上屋架不安全而吊车梁和排架柱偏于保守;考虑了工业建筑可变作用概率模型说明,GB 50144(报批稿)较《工业建筑可靠性鉴定标准》(GB 50144-2008)在等级界限的取值上更具有合理性。  相似文献   

6.
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasi-brittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete’s microstructure that is influenced by water cement ratio, grade of cement and type of aggregate [1], [2], [3] and [4]. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete [1], [2], [3] and [4]. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the ‘micro’ and the ‘macro’ and have not yet been described satisfactorily in a systematic manner [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [15], [16] and [17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model.  相似文献   

7.
In this paper a new finite element approach for the solution of the Timoshenko beam is shown. Similarly to the Euler-Bernoulli beam theory, it has been considered a single fourth order differential equation governs the equilibrium of the Timoshenko beam. The results obtained by this approach are very good, both in terms of accuracy and computational effort.  相似文献   

8.
The static behavior of an elastoplastic one-dimensional lattice system in bending, also called a microstructured elastoplastic beam or elastoplastic Hencky bar-chain (HBC) system, is investigated. The lattice beam is loaded by concentrated or distributed transverse monotonic forces up to the complete collapse. The phenomenon of softening localization is also included. The lattice system is composed of piecewise linear hardening–softening elastoplastic hinges connected via rigid elements. This physical system can be viewed as the generalization of the elastic HBC model to the nonlinear elastoplasticity range. This lattice problem is demonstrated to be equivalent to the finite difference formulation of a continuous elastoplastic beam in bending. Solutions to the lattice problem may be obtained from the resolution of piecewise linear difference equations. A continuous nonlocal elastoplastic theory is then built from the lattice difference equations using a continualization process. The new nonlocal elastoplastic theory associated with both a distributed nonlocal elastoplastic law coupled to a cohesive elastoplastic model depends on length scales calibrated from the spacing of the lattice model. Differential equations of the nonlocal engineering model are solved for the structural configurations investigated in the lattice problem. It is shown that the new micromechanics-based nonlocal elastoplastic beam model efficiently captures the scale effects of the elastoplastic lattice model, used as the reference. The hardening–softening localization process of the nonlocal continuous model strongly depends on the lattice spacing which controls the size of the nonlocal length scales.  相似文献   

9.
蜂窝夹芯试件破坏行为分析   总被引:1,自引:0,他引:1  
通过平面拉伸试验和双悬臂梁试验研究了蜂窝夹芯试件的破坏行为. 在平面拉伸试验中, 发现的破坏模式不是预期的面芯界面脱胶破坏而是面板层间分层破坏;在双悬臂梁试验中, 发现了一种与以往文献报导中不同的破坏模式(面板层间分层,预制裂纹偏转和面板分层扩 展依次出现). 针对试验中所发现的新的破坏模式,结合粘结模型,建立了基于 蔡-希尔破坏准则和能量准则的计算模型. 模拟结果与试验结果对比发现,所建立 的计算模型能够很好地模拟所发现的破坏行为.  相似文献   

10.
The discrete modeling of individual fibers in cement-based materials provides several advantages, including the ability to simulate the effects of fiber dispersion on pre- and post-cracking composite performance. Recent efforts in this direction have sought a balance between accurate representation of fiber behavior and computational expense. This paper describes a computationally efficient approach to representing individual fibers, and their composite behavior, within lattice models of cement-based materials. Distinguishing features of this semi-discrete approach include: (1) fibers can be positioned freely in the computational domain, irrespective of the background lattice representing the matrix phase; (2) the pre- and post-cracking actions of the fibers are simulated with little computational expense, since the number of system degrees of freedom is independent of fiber count. Simulated pullouts of single fibers are compared with theory and test results for the cases of perfectly-plastic and slip-hardening behavior of the fiber–matrix interface. To achieve objective results with respect to discretization of the matrix, pullout forces are distributed along the embedded lengths of fibers that bridge a developing crack. This is in contrast to models that lump the pullout force at the crack surfaces, which can lead to spurious break-off of matrix particles as the discretization of the matrix is refined. With respect to fracture in multi-fiber composites, the proposed model matches theoretical predictions of post-cracking strength and pullout displacement corresponding to the load-free condition. The work presented herein is a significant step toward the modeling of strain-hardening composites that exhibit multiple cracking.  相似文献   

11.
基于剪切梁的地垒断层型矿震解析分析   总被引:1,自引:0,他引:1  
朱小景  潘一山  唐治  王世娟 《力学与实践》2015,37(2):182-188,213
为得到地垒组合型断层失稳诱发矿震的方式及断层影响区顶板平衡结构的解析解,将顶板简化为剪切梁模型进行分析.基于弹性剪切梁确定了顶板最大等效剪力位置和顶板初次垮落步距的计算公式.顶板等效剪力随着采空区跨度的增加而增加,达到顶板极限值时发生初次来压,顶板断裂位置出现在煤层内部.用弹塑性剪切梁模型分析存在地垒断层的采场顶板初次来压和周期来压,当最大等效剪力达到断层剪切极限时,断层错动,释放能量,发生矿震.  相似文献   

12.
紧支试函数加权残值法   总被引:11,自引:0,他引:11  
将紧支函数引入加权残值法中,提出了紧支试函数加权残值法,其数值格式具有和有限元相似的窄带系数矩阵,提高了加权残值法的计算效率.在紧支试函数加权残值的基础上,导出了紧支试函数直接配点法、紧支试函数Hermite配点法和紧支试函数最小二乘配点法的具体格式,并且对几个典型算例进行了分析.与配点法相比,这些方法精度高,稳定性好,而与Galerkin法相比,这些方法效率高.  相似文献   

13.
The conversion of hydrocarbons in oil shale into liquid fuels has gained interest due to decreasing conventional oil reserves. Thermal conversion involves heating fractured rock and recovering gas and liquid phase products. The efficiency of this process is markedly dependent on heat transfer limitations between fracture porosity and rock matrix. Computer models are useful tools for process optimization. Explicit modeling of heat transfer processes within rock fragments would require great computational effort, making inverse modeling and forward process optimization very difficult if not impracticable. In this article, we evaluate the feasibility of using first-order heat transfer formulations to approximate these processes by comparing first-order model results with a rigorous explicit formulation and by comparison with laboratory retorting experiments published in the literature. Comparison of the two modeling approaches indicates that the first-order heat transfer approximation can be used without significant loss of accuracy if the block size and/or heating rate are not too large, as quantified by a proposed dimensionless heating rate. However, computational effort can be decreased by an order of magnitude compared with explicitly simulating diffusive heat transfer.  相似文献   

14.
双材料界面断裂力学模型与实验方法   总被引:4,自引:0,他引:4  
纤维增强聚合物(FRP)质轻、高强, 可提高结构的刚度、强度、抗震性能和耐久性, 近年来在结构加固及工程改造中得到广泛应用. FRP与传统复合材料之间形成双材料黏结界面, 界面断裂特性是决定双材料结构性能的关键因素. 对双材料界面裂纹尖端应力场理论、界面裂纹模型、黏结界面I型、II型及混合型断裂试验及理论研究现状进行综合评述和分析. 界面模型主要有经典梁/板理论和刚性节点模型、考虑剪切变形的双亚层理论和半刚性节点模型、基于双亚层理论的柔性节点模型、考虑剪切变形的多层亚层理论和多亚层柔性节点模型、弹性地基梁模型以及黏聚模型. 还介绍了双材料界面断裂力学在FRP-混凝土研究中的应用.   相似文献   

15.
An improved lattice model is developed to simulate the fracture behavior of large strain composite. Based on equivalent relation between the continuum and the lattice model for small deformation, the equivalent relation between large strain continuum and improved lattice model is established by introducing large strain elastic law into the lattice system. The theory can simulate large deformation. The program of large strain lattice model simulates several representative problem of large strain elasticity. The results agree with the theoretical results. Assumed failure criterion is used to describe the fracture process of large strain elasticity and large strain composite. The improved lattice model provides an effective method for fracture simulation of large strain composite.  相似文献   

16.
This paper describes a novel nondestructive damage detection method that was developed to study the influence of a crack on the dynamic properties of a cantilever beam subjected to bending. Experimental measurements of transfer functions for the cracked cantilever beam revealed a change in the natural frequency with increasing crack length. A finite element model of a cracked element was created to compute the influence of severity and location of damage on the structural stiffness. The proposed model is based on the response of the cracked beam element under a static load. The change in beam deflection as a result of the crack is used to calculate the reduction in the global component stiffness. The reduction of the beam stiffness is then used to determine its dynamic response employing a modal analysis computational model. Euler–Bernoulli and Timoshenko beam theories are used to quantify the elastic stiffness matrix of a finite element. The transfer functions from both theories compare well with the experimental results. The experimental and computational natural frequencies decreased with increasing crack length. Furthermore the Euler–Bernoulli and Timoshenko beam theories resulted in approximately the same decrease in the natural frequency with increasing crack length as experimentally measured.  相似文献   

17.
The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.  相似文献   

18.
杆件的断裂会涉及到大变形、非线性以及不连续等问题,通常的数值计算方法模拟这种复杂力学行为具有局限性。本文基于颗粒离散元法DEM,将接触粘结处的分布式弹簧用梁纤维进行等效,提出了一种适于结构弹塑性分析的DEM纤维梁模型,然后在此基础上构建了构件断裂模拟算法以及纤维破环准则。将该模型应用于悬臂梁结构,模拟了悬臂梁从弹性到弹塑性阶段,再到断裂破坏的全过程,数值模拟得到的结构响应和截面开裂破坏形态均较合理。最后将该方法应用于单层网壳倒塌破坏模拟,并与网壳振动台倒塌试验进行对比,结果表明,数值模拟得到的杆件断裂过程及结构倒塌模式与试验现象一致,验证了该模型的正确性和适用性。  相似文献   

19.
对格子Boltzmann方法的本质及Shan-Chen模型的核心机制进行了全面阐述, 并从应用实例角度对基于Shan-Chen模型的格子Boltzmann方法在微流动模拟方面的有效性、适应性进行了详细分析. 结果表明, Shan-Chen模型易于耦合微观条件下占主导作用的微观力, 拓宽了格子Boltzmann方法在微流动模拟方面的应用. 同时, Shan-Chen模型在润湿性边界条件表征方面的优势, 使得这种方法在微结构表面的滑移效应模拟方面具有很好的应用前景.  相似文献   

20.
The investigation of dispersion by microscopic simulations yields a lot of detailed information. To identify characteristic behaviours, it is useful to condense this information into a few effective parameters, which describe the transport process in the model geometry on a larger scale. For this purpose, a very simple two-velocity model has been developed, which models the transition from reversible to irreversible spreading of a tracer volume. It is shown that this model is very similar to Taylor–Aris dispersion and that it is quite suitable to approximate the time dependence of dispersion. The model is applied to characterize the effect of dead end pores on dispersion with a single correlation parameter. Up to Péclet numbers of about 500, 'hold-up'-dispersion similar to Taylor–Aris-dispersion is found. The simulations have been performed by the lattice Bhatnagar–Gross–Krook (BGK) method, which is a particular type of cellular automata and therefore allows an easy implementation of complicated geometries. The fully irreversible asymptotic dispersion is reached in an exponential process, the parameters of which can be identified by the two-velocity model after the mixing has noticeably begun. These are used to extrapolate the process which reduces the computational effort by about one order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号