首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the CCSD(T)/cc-pVDZ//B3LYP/6-311G(2d,2p) method, we calculated the detailed potential energy surfaces (PESs) for the unimolecular isomerization and decomposition of methyl peroxynitrate (CH3O2NO2). The results show that there are the two most stable isomers, IS1a and IS1b, which are a pair of mirror image isomers. From IS1a and IS1b, different isomerization and unimolecular decomposition reaction channels have been studied and discussed. Among them, the predominant thermal decomposition pathways are those leading to CH3O2 + NO2 and cis-CH3ONO + O2. The former is the lowest-energy path through the direct O–N bond rupture in IS1a or IS1b. The PES along the O–N bond in IS1a has been scanned, where the energy of IS1a reaches maximum value of 23.5 kcal/mol when the O–N bond is stretched to about 2.8 Å. This energy is 2.7 kcal/mol larger than the O–N bond dissociation energy (BDE) and 2.8 kcal/mol larger than the experimental active energy. In addition, because the energy barriers of IS1a isomerization to IS2a are 23.8 kcal/mol, close to the 20.8 kcal/mol O–N BDE in IS1a or IS1b, the isomerization reaction may compete with the direct bond rupture dissociation reaction.  相似文献   

2.
The kinetics and equilibria in the system Br + t-BuO2H ? HBr + t-BuO2· have been measured in the range of 300–350 K using the very low pressure reactor (VLPR) technique. Using an estimated entropy change in reaction (1) ΔS1 = 3.0 ± 0.4 cal/mol·K together with the measured ΔG1, we find ΔH1 = 1.9 ± 0.2 kcal/mol and DHº (t-BuO2-H) = 89.4 ± 0.2 kcal/mol ΔHf·(tBuO2·) = 20.7 kcal/mol and DHº (t-Bu-O2) = 29.1 kcal/mol. The latter values make use of recent values of ΔHf·(t-Bu) = 8.4 ± 0.5 kcal/mol and the known thermochemistry of the other species. The activation energy E1 is found to be 3.3 ± 0.6 kcal/mol, about 1 kcal lower than the value found for Br attack on H2O2. It suggests a bond 1 kcal stronger in H2O2 than in tBuO2H.  相似文献   

3.
The thermodynamic cycle consisting of thermal decomposition and dissociative ionization processes for 1,1-dimethyl-1-silacyclobutane is calculated. The heat of formation and the ionization potential (IP) for 1,1-dimethyl-1-sila-ethylene (DMSE) have been obtained: ΔHof(DMSE) = 15.5 ± 5 kcal/mol; IP(DMSE) = 7.5 ± 0.3 eV. The siliconcarbon π-bond energy in DMSE is estimated: Dπ(SiC)  28 ± 8 kcal/mol.  相似文献   

4.
The reaction of C2H5OH and O3 on the singlet potential energy surface is carried out using the MP2 and CCSD(T)//MP2 theoretical approaches in connection with the 6-311++G(d,p) basis set. Three pre-reactive complexes C1, C2, and C3 are formed between ethanol and ozone at atmospheric pressure and 298.15 K temperature. With variety of the complexes, seven types of product are obtained which four types of them have enough thermodynamic stability. In thermodynamic approach, the most favor product begins with the formation of pre-reactive C2 complex and produces the CH3CH(OH)2 + O2 as final adduct in a process that is computed to be exothermic by ?53.759 kcal/mol and spontaneous reaction by ?51.833 kcal/mol in Gibbs free energy. In kinetic viewpoint, the formation of CH3COH + cis-H2O3 as a final adducts is the most favor path.  相似文献   

5.
The far i.r. (400-50 cm−1) spectra of gaseous and solid furfural (2-furancarboxaldehyde), c-C4H3O (CHO), have been recorded. Additionally, the Raman (3500-20 cm−1) spectra of the gas and liquid have been obtained at variable temperatures and the spectrum of the solid at 25 K. These data have been interpreted on the basis that the molecule exists in two different conformations in the fluid states and that the conformation which has the two oxygen atoms oriented in a trans configuration, OO-trans, is most stable (ΔH ⩽ 1 kcal/mol) in the gas; however, the conformation which has the two oxygen atoms oriented cis, OO-cis, is preferred in the liquid (ΔH = 1.07 ± 0.03 kcal/mol) and is the only rotamer present in the spectra of the solid. The asymmetric torsional fundamental for the OO-trans rotamer has been observed at 146.25 cm−1 in the far i.r. spectrum of the vapor and has five accompanying “hot bands”. The corresponding fundamental for the OO-cis rotamer has been observed at 127.86 cm−1 along with a “hot band” which occurs at 127.46 cm−1. From these data a cosine-based potential function governing internal rotation of the CHO top has been determined and the potential coefficients have values of V1 = 173 ± 2, V2 = 3112 ± 20, V3 = 113 ± 2 and V4 = −198 ± 6 cm−1. This potential is consistent with an enthalpy difference between the more stable OO-trans and high energy OO-cis conformers being 286 ± 24 cm−1 (818 ± 67 cal/mol) and a trans to cis barrier height of 3255 ± 20 cm−1 (9.31 ± 0.06 kcal/mol). These results are compared to the corresponding quantities obtained previously from microwave spectroscopy and theoretical methods.  相似文献   

6.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   

7.
Counterpoise corrected ab initio calculations are reported for (H2O)2 and H2O-H2CO. Geometry searches were done in the moment-optimized basis DZP' at the SCF, MP2, and CEPA-1 levels of theory, followed by more accurate single-point calculations in basis ESPB, which includes bondfunctions to saturate the dispersion energy. The final equilibrium binding energies obtained are ?4.7 ±0.3 kcal/mol for a near-linear (H2O)2 structure and ?4.6 ±0.3 kcal/mol for a strongly bent HOH ‥ OCH2 structure. The energy difference between these systems is much smaller than in all previous ab initio work. Cyclic (C2h) and bifurcated (C2v) transition structures for (H2O)2 are located at 1.0 ±0.1 kcal/mol and 1.9 ±0.3 kcal/mol above the global minimum, respectively. A new partitioning scheme is presented that rigorously partitions the MP2 correlation interaction energy in intra and intermolecular (dispersion) contributions. These terms are large (up to 2 kcal/mol) but of opposite sign for most geometries studied and hence their overall effect upon the final structures is relatively small. The relative merits of the MP2 and CEPA-1 approaches are discussed are discussed and it is concluded that for economical reasons MP2 is to be preferred, especially for larger systems.  相似文献   

8.
《Chemical physics letters》1999,291(5-6):449-453
The CCSD(T) atomization energies are extrapolated to the complete basis set limit, and are corrected for zero-point energy, spin–orbit, core-valence, and scalar relativistic effects. Our best heats of formation at 298 K for CF4 and C2F4 are −223.1±1.1 and −160.5±1.5 kcal/mol, respectively. The CF4 value is in excellent agreement with experiment (−223.04±0.18 kcal/mol), while the C2F4 result suggests that the experimental value (−157.6±0.6 kcal/mol) has a larger error than believed. Our value for C2F4 also shows that the G3 value has the expected error of ±2 kcal/mol.  相似文献   

9.
With the purpose of deciphering conformational inversion processes of typical mobile bicyclic molecules, torsional energy surfaces near the enantiomers of bicyclo[4.2.1]nonan-9-one ( 1 ) and bicyclo-[4.2.2]decane ( 2 ) were prepared using molecular mechanics with an improved two-bond drive technique. Inversion of 1 takes place most favorably via a Cs transition state with the tetramethylene chain over the ethano bridge [ 1B , ΔH± 6.1 (calculated) vs. 6.8 (observed) kcal/mol]. An alternative pathway involving a Cs local energy minimum ( 1C ), in which the tetramethylene chain is bent over the carbonyl, has a barrier 2.4 kcal higher than 1B . The global energy minimum conformation of 2 has boat–chair cyclooctane and twist–boat cyclohexane rings (BCTB ), and enantiomerizes into its mirror image (BCTB ') via three intermediates: TCTB , CB , and TCTB '. The highest point in the proposed pathway, a saddlepoint CB , is calculated to lie 8.0 kcal/mol above BCTB (observed ΔH± 7.8 kcal/mol). The advantage of the two-parametric over the one-parametric torsional energy surface is discussed.  相似文献   

10.
The rate constants for the reaction of CN with N2O and CO2 have been measured by the laser dissociation/laser-induced fluorescence (two-laser pump-probe) technique at temperatures between 300 and 740 K. The rate of CN + N2O was measurable above 500 K, with a least-squares averaged rate constant, k = 10−11.8±0.4 exp(−3560 ± 181/T) cm3/s. The rate of CN + CO2, however, was not measurable even at the highest temperature reached in the present work, 743 K, with [CO2] ⩽ 1.9 × 1018 molecules/cm3. In order to rationalize the observed kinetics, quantum mechanical calculations based on the BAC-MP4 method were performed. The results of these calculations reveal that the CN + N2O reaction takes place via a stable adduct NCNNO with a small barrier of 1.1 kcal/mol. The adduct, which is more stable than the reactants by 13 kcal/mol, decomposes into the NCN + NO products with an activation energy of 20.0 kcal/mol. This latter process is thus the rate-controlling step in the CN + N2O reaction. The CN + CO2 reaction, on the other hand, occurs with a large barrier of 27.4 kcal/mol, producing an unstable adduct NCOCO which fragments into NCO + CO with a small barrier of 4.5 kcal/mol. The large overall activation energy for this process explains the negligibly low reactivity of the CN radical toward CO2 below 1000 K. Least-squares analyses of the computed rate constants for these two CN reactions, which fit well with experimental data, give rise to for the temperature range 300–3000 K.  相似文献   

11.
Employing density functional calculations including an empirical dispersion term, we investigated the hydrogenation of an aluminum nitride nanosheet (h-AlN) with atomic and molecular hydrogen. It was found that atomic H prefers to be adsorbed on an N atom rather than Al, releasing energy of 21.1 kcal/mol. The HOMO/LUMO energy gap of the sheet is dramatically reduced from 107.9 to 44.5 kcal/mol, upon the adsorption of one hydrogen atom. The adsorption of atomic H on the h-AlN presents properties which are promising for nanoelectronic applications. The molecular H2 was found to be adsorbed collinearly on an N atom and dissociated to two H atoms on Al–N bond. Calculated barrier and adsorption energies for this dissociation process are about +18.9 and ?1.9 kcal/mol. We predict that each nitrogen atom in an AlN sheet can adsorb two hydrogen molecules on opposite sides of the sheet, and thus the gravimetric density for hydrogen storage on AlN sheet is evaluated to be about 8.9 wt%.  相似文献   

12.
The degradation of isotactic polypropylene in the range 390–465°C was studied using factor-jump thermogravimetry. The degradations were carried out in vacuum and at pressures of 5 and 800 mm Hg of N2, flowing at 100–400 standard mL/s. At 800 mm Hg this corresponds to linear rates of 1–4 mm/s. In vacuum bubbling in the sample caused problems in measuring the rate of weight loss. The apparent activation energy was estimated as 61.5 ± 0.8 kcal/mol (257 ± 3 kJ/mol). In slowly flowing N2 at 800 mm Hg pressure the activation energy was 55.1 ± 0.2 kcal/mol (230 ± 0.8 kJ/mol) for isotactic polypropylene and 51.1 ± 0.5 kcal/mol (214 ± 2 kJ/mol) for a naturally aged sample of atactic polypropylene. For isotactic polypropylene degrading at an external N2 pressure of 5 mm Hg the apparent activation energy was 55.9 ± 0.3 kcal/mol (234 ± 1 kJ/mol). A simplified degradation mechanism was used with estimates of the activation energies of initiation and termination to give an estimate of 29.6 kcal/mol for the ß-scission of tertiary radicals on the polypropylene backbone. Initiation was considered to be backbone scission ß to allyl groups formed in the termination reaction. For initiation by random scission of the polymer backbone, as in the early stages of thermal degradation, an overall activation energy of 72 kcal/mol is proposed. The difference between vacuum and in-N2 activation energies is ascribed to the latent heat contributions of molecules which do not evaporate as soon as they are formed. At these imposed rates of weight loss the average molecular weights of the volatiles in vacuum and in 8 and 800 mm Hg N2 are in the ratios 1–1/2–1/9.  相似文献   

13.
The bimolecular nucleophilic substitution reaction of CH3CH2Cl + ClO? in aqueous solution was investigated using a multilayered-quantum representation, quantum mechanical and molecular mechanics approach with an explicit water model. Ten configurations along the reaction pathway including reactant complex, transition state and product complex were analyzed in the presence of the aqueous solution. The obtained free energy activation barrier under the CCSD(T)/MM representation is 13.2 kcal/mol, while it is 11.7 kcal/mol under the DFT/MM representation which agrees very well with the DFT calculation, at 11.0 kcal/mol, with a polarizable continuum solvent model. The solvent effects including the solvation free energy contribution and the polarization effect raise the free activation barrier by 9.8 kcal/mol. The rate constant, at 298 K, is 5.27 × 10?17 cm3/molecule/s which is about seven orders of magnitude smaller than that in the gas phase (1.10 × 10?10 cm3/molecule/s). All in all, the aqueous solution plays an essential role in shaping the reaction pathway for this reaction in water.  相似文献   

14.
Molecular mechanics calculations (MM2') are reported on methylenecyclohexane, 1 , methylenecyclopentane, 2 , and cyclopentane itself, 3. The calculated torsional energy barrier for the chair/chair interconversion of 1 if 8.7 kcal/mol (experimental ΔH = 8.4 ±0.1 kcal/mol); compounds 2 and 3 have virtually free pseudorotational pathways (calculated ΔH = 2.33 and 0.008 kcal/mol, respectively).  相似文献   

15.
Ab initio calculations including electron correlation effects (mainly on CEPA-PNO level) have been performed for the potential energy surface of the reaction of 3P oxygen atoms with molecular hydrogen. The collinear abstraction reaction (C∞v symmetry) and the vertical insertion reaction (C2v) have been investigated with particular emphasis.The influence of the orbital basis size and of electron correlation both on the reaction energy and on the barrier height and location for the abstraction reaction has been studied in some detail. Our extrapolated value for the barrier for this reaction is 13.4 ± 1.0 kcal/mol, in fair agreement with the experimental activation energy, while the insertion reaction has to pass over a barrier of =48 kcal/mol. The analysis of electron correlation effects reveals that it is compulsory to include all singly and doubly substituted configurations, to correct for unlinked cluster contributions and to use fairly large basis sets if one wants to get accurate ab initio potential surfaces for the reactions of triplet oxygen atoms.  相似文献   

16.
Degradation of polyethylene in both linear (NBS 1475) and branched (NBS 1476) form has been studied in the range 410–475°C using factor-jump thermogravimetry. In vacuum, the rate of weight loss was erratic because of bubbling in the sample. The apparent overall activation energy was determined to be 65.4 ± 0.5 kcal/mol (273 ± 2 kJ/mol). There was no distinguishable difference between linear and branched samples. In slowly flowing N2 at 8 mmHg (1 mmHg = 133 Pa), the overall activation energy was determined to be 64.8 ± 0.3 kcal/mol (271 ± 1 kJ/mol) for linear PE and 64.4 ± 0.2 kcal/mol (269 ± 1 kJ/mol) for a sample of PE with one percent branches. In N2 at 800 mmHg, the values were 62.6 ± 0.5 kcal/mol for linear PE and 61.2 ± 0.6 kcal/mol for the branched sample, the rate of weight loss being smooth in both cases. Changing the linear flow velocities over the range 1–4 mm/sec at 800 mmHg did not affect the results. From the insertion of typical values in the equation relating the overall activation energy for weight loss from linear polyethylene to the activation energies of the component steps, a degradation mechanism involving scission β to allyl groups, with rapid hydrogen abstraction, slower subsequent β scission, and bimolecular termination, is indicated. The activation energy of β scission for secondary alkyl radicals is estimated to be 33 kcal/mol. The reason for the lower activation energies in N2 is related to the effects of preformed molecules. The average molecular weights of the volatiles in vacuum and for 8 and 800 mmHg N2 have been shown to be in the ratios 1 to 1/4 to 1/10, respectively, at these imposed rates of weight loss. The activation energies to use for the initial stage of degradation are 70.6 kcal/mol (295 kJ/mol) in vacuum and 67.8 kcal/mol (284 kJ/mol) at atmospheric pressure.  相似文献   

17.
The hydrolyzed Ru(η 6 -C6H5(CH2)2OH)Cl2(DAPTA) (DAPTA = 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) binding to guanine(G), adenine (A), cytosine(C), cysteine (Cys), and histidine (His) residues were explored using the B3LYP hybrid functional and IEF-PCM solvation models. The computed activation barriers for the reactions of diaqua complex were lower than those of chloroaqua complex except for binding to cytosine. For the chloroaqua complex, the activation free energy was lowest when binding to cytosine (10.5 kcal/mol). Whereas, the substitution reaction of diaqua complex binding to cysteine showed the lowest activation free energy with 10.1 kcal/mol, closely followed by histidine (15.8 kcal/mol), adenine (20.1 kcal/mol), cytosine (20.7 kcal/mol), and guanine (24.4 kcal/mol) by turns. It could be deduced that the completely hydrolyzed Ru(η 6 -C6H5(CH2)2OH)Cl2(DAPTA) compounds might preferentially bind to amino acids residues in vivo. In addition, to simulate the protein and DNA environment in vivo, a detailed investigation of the activation free energies for the substitution reactions in dependence of the dielectric constant ε (4, 24, and 78.39) was systematically performed as well. The calculated results demonstrated that the environmental effect had a little impact on these substitution reactions.  相似文献   

18.
The bimolecular nucleophilic substitution (SN2) reaction of CH3F + OH? in aqueous solution was investigated using a combined quantum mechanical and molecular mechanics approach. Reactant complex, transition state, and product complex along the reaction pathway were analyzed in water. The potentials of mean force were calculated using a multilayered representation with the DFT and CCSD(T) level of theory for the reactive region. The obtained free energy activation barrier for this reaction at the CCSD(T)/MM representation is 18.3 kcal/mol which agrees well with the experimental value at ~21.6 kcal/mol. Both the solvation effect and solute polarization effect play key roles on raising the activation barrier height in aqueous solution, with the former raising the barrier height by 3.1 kcal/mol, the latter 1.5 kcal/mol. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
This study combines Fourier transform infrared (FTIR) spectroscopy and temperature‐programmed desorption to examine the evaporation kinetics of thin films of crystalline nitric acid hydrates, solid amorphous H2O/HNO3 mixtures, H2O–ice, ice coated with HCl, and solid HNO3. IR spectroscopy measured the thickness of each film as it evaporated, either at constant temperature or during a linear temperature ramp (temperature‐programmed infrared, TPIR). Simultaneously, a mass spectrometer measured the rate of evaporation directly by monitoring the evolution of the molecules into the gas phase (temperature‐programmed desorption, TPD). Both TPIR and TPD data provide a measurement of the desorption rate and yield the activation energy and preexponential factor for desorption. TPD measurements have the advantage of producing many data points but are subject to interference from experimental difficulties such as uneven heating from the edge of a sample and sample‐support as well as pumping‐speed limitations. TPIR experiments give clean but fewer data points. Evaporation occurred between 170 and 215 K for the various films. Ice evaporates with an activation energy of 12.9 ± 1 kcal/mol and a preexponential factor of 1 × 1032±1.5 molec/cm2 s, in good agreement with the literature. The beta form of nitric acid trihydrate, β–NAT, has an Edes of 15.6 ± 2 kcal/mol with log A = 34.3 ± 2.3; the alpha form of nitric acid trihydrate, α–NAT, is around 17.7 ± 3 kcal/mol with log A = 37.2 ± 4. For nitric acid dihydrate, NAD, Edes is 17.3 ± 2 kcal/mol with log A = 35.9 ± 2.6; for nitric acid monohydrate, NAM, Edes is 13 ± 3 kcal/mol with log A = 31.4 ± 3. The α–NAT converts to β–NAT during evaporation, and the amorphous solid H2O/HNO3 mixtures crystallize during evaporation. The barrier to evaporation for pure nitric acid is 14.6 ± 3 kcal/mol with log A = 34.4 ± 3. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 295–309, 2001  相似文献   

20.
Heats of reaction and barrier heights have been computed for H + CH2CH2 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH using unrestricted Hartree-Fock and Møller–Plesset perturbation theory up to fourth order (with and without spin annihilation), using single-reference configuration interaction, and using multiconfiguration self-consistent field methods with 3-21G, 6-31G(d), 6-31G(d,p), and 6-311G(d,p) basis sets. The barrier height in all three reactions appears to be relatively insensitive to the basis sets, but the heats of reaction are affected by p-type polarization functions on hydrogen. Computation of the harmonic vibrational frequencies and infrared intensities with two sets of polarization functions on heavy atoms [6-31G(2d)] improves the agreement with experiment. The experimental barrier height for H + C2H4 (2.04 ± 0.08 kcal/mol) is overestimated by 7?9 kcal/mol at the MP2, MP3, and MP4 levels. MCSCF and CISD calculations lower the barrier height by approximately 4 kcal/mol relative to the MP4 calculations but are still almost 4 kcal/mol too high compared to experiment. Annihilation of the largest spin contaminant lowers the MP4SDTQ computed barrier height by 8?9 kcal/mol. For the hydrogen addition to formaldehyde, the same trends are observed. The overestimation of the barrier height with Møller-Plesset perdicted barrier heights for H + C2H4 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH at the MP4SDTQ /6-31G(d) after spin annihilation are respectively 1.8, 4.6, and 10.5 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号