首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Consider a 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space ${W^{s,p}\left( p >1 ,s <1 +\frac{1}{p}\right)}${W^{s,p}\left( p >1 ,s <1 +\frac{1}{p}\right)} of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in Ws,p( s < 1 +\frac1p){W^{s,p}\left( s <1 +\frac{1}{p}\right)} space for any homogeneous equilibria and any spatial period. Indeed, in a Ws,p(s < 1 +\frac1p){W^{s,p}\left(s <1 +\frac{1}{p}\right)} neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose’s linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some ${W^{s,p}\left( p >1 ,s >1 +\frac{1}{p}\right)}${W^{s,p}\left( p >1 ,s >1 +\frac{1}{p}\right)} neighborhood. Furthermore, when p = 2, we prove that there exist no nontrivial invariant structures in the ${H^{s}\left( s > \frac{3}{2}\right) }${H^{s}\left( s > \frac{3}{2}\right) } neighborhood of stable homogeneous states. These results suggest the long time dynamics in the ${W^{s,p}\left( s >1 +\frac{1}{p}\right) }${W^{s,p}\left( s >1 +\frac{1}{p}\right) } and particularly, in the ${H^{s}\left( s > \frac{3}{2}\right) }${H^{s}\left( s > \frac{3}{2}\right) } neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for a linearly stable homogeneous state. This suggests that the contrasting dynamics in W s, p spaces with the critical power s=1+\frac1p{s=1+\frac{1}{p}} is a truly nonlinear phenomena which can not be traced back to the linear level.  相似文献   

2.
Given a one dimensional perturbed Schrödinger operator H =  ? d 2/dx 2 + V(x), we consider the associated wave operators W  ± , defined as the strong L 2 limits $\lim_{s\to\pm\infty}e^{isH}e^{-isH_{0}}Given a one dimensional perturbed Schr?dinger operator H = − d 2/dx 2 + V(x), we consider the associated wave operators W ± , defined as the strong L 2 limits . We prove that W ± are bounded operators on L p for all 1 < p < ∞, provided , or else and 0 is not a resonance. For p = ∞ we obtain an estimate in terms of the Hilbert transform. Some applications to dispersive estimates for equations with variable rough coefficients are given.  相似文献   

3.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

4.
Bounds are obtained on the unintegrated density of states ρ(E) of random Schrödinger operatorsH=?Δ + V acting onL 2(? d ) orl 2(? d ). In both cases the random potential is $$V: = \sum\limits_{y \in \mathbb{Z}^d } {V_y \chi (\Lambda (y))}$$ in which the \(\left\{ {V_y } \right\}_{y \in \mathbb{Z}^d }\) areIID random variables with densityf. The χ denotes indicator function, and in the continuum case the \(\left\{ {\Lambda (y)} \right\}_{y \in \mathbb{Z}^d }\) are cells of unit dimensions centered ony∈? d . In the finite-difference case Λ(y) denotes the sitey∈? d itself. Under the assumptionf ∈ L 0 1+? (?) it is proven that in the finitedifference casep ∈ L (?), and that in thed= 1 continuum casep ∈ L loc (?).  相似文献   

5.
We consider the zero-temperature behavior of a disordered array of quantum rotators given by the finite-volume Hamiltonian: $$H_\Lambda = - \mathop \Sigma \limits_{x \in \Lambda } \frac{{h(x)}}{2}\frac{{\partial ^2 }}{{\partial \varphi (x)^2 }} - J\mathop \Sigma \limits_{\left\langle {x,y} \right\rangle \in \Lambda } \cos (\varphi (x) - \varphi (y))$$ , wherex,yZ d , 〈,〉 denotes nearest neighbors inZ d ;J>0 andh={h(x)>0,xZ d } are independent identically distributed random variables with common distributiondμ(h), satisfying ∫h dμ(h)<∞ for some δ>0. We prove that for anym>0 it is possible to chooseJ(m) sufficiently small such that, if 0<J<J(m), for almost every choice ofh and everyxZ d the ground state correlation function satisfies $$\left\langle {\cos (\varphi (x) - \varphi (y))} \right\rangle \leqq C_{x,h,J} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x,h,J <∞.  相似文献   

6.
We discuss the polar angle decay distribution in the decay of on-shell and off-shell polarized (W, Z) gauge bosons into massive quark pairs. In particular for the off-shell decays in $H \to \left( {W,Z} \right) + \left( {W^* ,Z^* } \right)\left( { \to q_1 ,\vec q_2 } \right)$ it is important to keep the masses of the charm and bottom quarks at their finite values since the scale of the problem is not set by m W,Z 2 but by the offshellness of the gauge boson which varies in the range (m 1 + m 2)2q 2 ≤ (m H ? m W,Z )2.  相似文献   

7.
TheL-subshell conversion for 77 keV transition andK,L 1,L 2-shell conversion for 191 keV transition in197Au, as well asK-shell conversion transition of 158 keV in199Hg were measured by means of Π√2-iron free electron spectrometer. Relative gamma-ray intensities have been determined by Ge(Li) spectrometer. From these measurements the α K conversion coefficient value has been deduced for 191 keV transition as αK(191 keV)=0.86±0.03. This value shows that the spin of the level at 268 keV in197Au is 3/2+. For the penetration parameter (λ) and intensity ratio \(\left( {\delta ^2 = \frac{{\left\langle {E2} \right\rangle ^2 }}{{\left\langle {MI} \right\rangle ^2 }}} \right)\) the following values are obtained: $$\begin{gathered} \lambda = 3.4 \pm _{1.5}^{1.9} \delta ^2 = 0.11 \pm 0.03for 77 keV transition \hfill \\ \lambda = 3.2 \pm _{0.6}^{0.8} \delta ^2 = 0.17 \pm 0.04for 191 keV transition. \hfill \\ \end{gathered} $$ The agreement of these results with the predictions of De Shalit model is discussed.  相似文献   

8.
We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements H xy , indexed by \({x,y \in \Lambda \subset \mathbb{Z}^d}\), are independent, uniformly distributed random variables if \({\lvert{x-y}\rvert}\) is less than the band width W, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales \({t\ll W^{d/3}}\). We also show that the localization length of the eigenvectors of H is larger than a factor W d/6 times the band width. All results are uniform in the size \({\lvert{\Lambda}\rvert}\) of the matrix.  相似文献   

9.
The hyperfine structure and the Stark effect shift of the 4d5s5p z 2 F 5/2 states in the Y I spectrum were investigated by level-crossing technique. Between the Zeeman effect region and the Paschen-Back region of hyperfine structure states some of the levels cross. The resonance radiation of these coherently excited levels show an interference effect of the scattering amplitudes in the crossing region. The level-crossing signals give information about hfs splitting and lifetime of the excited states under investigation. The magnetic hfs splitting factorsA of the 4d5s5p z 2 F 5/2, 7/2 states and their lifetimes were deduced. $$\begin{gathered} |A (z^2 F_{5/2} )| = (23.8 \pm 0.04) MHz \frac{{g_J }}{{0.854}} \hfill \\ |A (z^2 F_{7/2} )| = (84.08 \pm 0.01) MHz \frac{{g_J }}{{1.148}} \hfill \\ \tau (z^2 F_{5/2} ) = (46 \pm 3) 10^{ - 9} s \frac{{0.854}}{{g_J }} \hfill \\ \tau (z^2 F_{7/2} ) = (44 \pm 4) 10^{ - 9} s \frac{{1.148}}{{g_J }}. \hfill \\ \end{gathered} $$ With an electric field parallel to the magnetic field a shift of the level-crossing signals of the 4d5s5p z 2 F 5/2, 7/2 states was observed, and the Stark constants β were deduced. $$\begin{gathered} |\beta (z^2 F_{5/2} )| = (0.0020 \pm 0.0002) MHz/(kV/cm)^2 \hfill \\ |\beta (z^2 F_{7/2} )| = (0.0025 \pm 0.0015) MHz/(kV/cm)^2 . \hfill \\ \end{gathered} $$   相似文献   

10.
We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems such as small magnetic clusters, we consider models with free boundary conditions. For a field-driven transition with two coexisting phases at the infinite-volume transition pointh=h t , we prove that the low-temperature, finite-volume magnetizationm free(L, h) per site in a cubic volume of sizeL d behaves like $$m_{free} (L,h) = \frac{{m_ + + m_ - }}{2} + \frac{{m_ + - m_ - }}{2}tanh\left[ {\frac{{m_ + - m_ - }}{2}L^d (h - h_\chi (L))} \right] + O\left( {\frac{1}{L}} \right)$$ whereh x (L) is the position of the maximum of the (finite-volume) susceptibility andm ± are the infinite-volume magnetizations ath=h t +0 andh=h t ?0, respectively. We show thath x (L) is shifted by an amount proportional to 1/L with respect to the infinite-volume transition pointh t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boundary conditions, which for an asymmetric transition with two coexisting phases is proportional only to 1/L 2d . One can consider also other definitions of finite-volume transition points, for example, the positionh U (L) of the maximum of the so-called Binder cumulantU free(L,h). Whileh U (L) is again shifted by an amount proportional to 1/L with respect to the infinite-volume transition pointh t , its shift with respect toh χ (L) is of the much smaller order 1/L 2d . We give explicit formulas for the proportionality factors, and show that, in the leading 1/L 2d term, the relative shift is the same as that for periodic boundary conditions.  相似文献   

11.
We study subadditive functions of the random parking model previously analyzed by the second author. In particular, we consider local functions S of subsets of ${\mathbb{R}^d}$ and of point sets that are (almost) subadditive in their first variable. Denoting by ξ the random parking measure in ${\mathbb{R}^d}$ , and by ξ R the random parking measure in the cube Q R =  (?R, R) d , we show, under some natural assumptions on S, that there exists a constant ${\overline{S} \in \mathbb{R}}$ such that $$\lim_{R \to +\infty} \frac{S(Q_R, \xi)}{|Q_R|} \, = \, \lim_{R \to +\infty} \frac{S(Q_R, \xi^{R})}{|Q_R|} \, = \, \overline{S}$$ almost surely. If ${\zeta \mapsto S(Q_R, \zeta)}$ is the counting measure of ${\zeta}$ in Q R , then we retrieve the result by the second author on the existence of the jamming limit. The present work generalizes this result to a wide class of (almost) subadditive functions. In particular, classical Euclidean optimization problems as well as the discrete model for rubber previously studied by Alicandro, Cicalese, and the first author enter this class of functions. In the case of rubber elasticity, this yields an approximation result for the continuous energy density associated with the discrete model at the thermodynamic limit, as well as a generalization to stochastic networks generated on bounded sets.  相似文献   

12.
WE consider a one-dimensional random Ising model with Hamiltonian $$H = \sum\limits_{i\ddag j} {\frac{{J_{ij} }}{{\left| {i - j} \right|^{1 + \varepsilon } }}S_i S_j } + h\sum\limits_i {S_i } $$ , where ε>0 andJ ij are independent, identically distributed random variables with distributiondF(x) such that i) $$\int {xdF\left( x \right) = 0} $$ , ii) $$\int {e^{tx} dF\left( x \right)< \infty \forall t \in \mathbb{R}} $$ . We construct a cluster expansion for the free energy and the Gibbs expectations of local observables. This expansion is convergent almost surely at every temperature. In this way we obtain that the free energy and the Gibbs expectations of local observables areC functions of the temperature and of the magnetic fieldh. Moreover we can estimate the decay of truncated correlation functions. In particular for every ε′>0 there exists a random variablec(ω)m, finite almost everywhere, such that $$\left| {\left\langle {s_0 s_j } \right\rangle _H - \left\langle {s_0 } \right\rangle _H \left\langle {s_j } \right\rangle _H } \right| \leqq \frac{{c\left( \omega \right)}}{{\left| j \right|^{1 + \varepsilon - \varepsilon '} }}$$ , where 〈 〉 H denotes the Gibbs average with respect to the HamiltonianH.  相似文献   

13.
We give an upper bound on the decay of correlation function for the plane rotator model with Hamiltonian $$ - \frac{1}{2}\mathop \sum \limits_{xy} \frac{{J_{xy} \cos (\theta _x - \theta _y )}}{{\| {x - y} \|^{({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon )^d } }}$$ in dimensiond=1 andd=2 when (J xy are independent random variables with mean zero.  相似文献   

14.
Classical lattice systems with random Hamiltonians $$\frac{1}{2}\sum\limits_{x_1 \ne x_2 } {\frac{{\varepsilon (x_1 ,x_2 )\varphi (x_1 )\varphi (x_2 )}}{{\left| {x_1 - x_2 } \right|^{\alpha d} }}}$$ are considered, whered is the dimension, andε(x 1,x 2) are independent random variables for different pairs (x 1,x 2),(x 1,x 2) = 0. It is shown that the free energy for such a system exiists with probability 1 and does not depend on the boundary conditions, providedα > 1/2.  相似文献   

15.
In this paper, we study analytical and arithmetical properties of the twisted zeta function $\Gamma (s)^{ - 1} \int_0^\infty {e^{ - xt} t^{s - 1} } \prod\nolimits_{j = 1}^N {\frac{{a_j t - \log (w^a j)}} {{1 - w^{a_j } e^{a_j t} }}dt} $ , where ?(s) > N, ?(x) > 0, w ∈ ?\{0}, N ∈ ?, and a 1, …, a N have positive real parts. These functions have many interesting properties. We prove a collection of fundamental identities satisfied by zeta functions of this kind. For instance, special values of these zeta functions are related to twisted Barnes numbers and polynomials. This gives us a new elementary approach to new and known results concerning the Barnes zeta functions. In particular, we derive some well-known results on the Hurwitz zeta functions.  相似文献   

16.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

17.
The properties of the high-field polynomialsL n (u) for the one-dimensional spin 1/2 Ising model are investigated. [The polynomialsL n (u) are essentially lattice gas analogues of the Mayer cluster integralsb n (T) for a continuum gas.] It is shown thatu ?1 L n (u) can be expressed in terms of a shifted Jacobi polynomial of degreen?1. From this result it follows thatu ?1 L n (u); n=1, 2,... is a set of orthogonal polynomials in the interval (0, 1) with a weight functionω(u)=u, andu ?1 L n (u) hasn?1 simple zerosu n (v); v=1, 2,...,n?1 which all lie in the interval 0<u<1. Next the detailed behavior ofL n (u) asn→∞ is studied. In particular, various asymptotic expansions forL n (u) are derived which areuniformly valid in the intervalsu<0, 0<u<1, andu>1. These expansions are then used to analyze the asymptotic properties of the zeros {u n (v); v=1, 2,...,n?1}. It is found that $$\begin{array}{*{20}c} {u_n (v) \sim \tfrac{1}{4}({{j_{1,v} } \mathord{\left/ {\vphantom {{j_{1,v} } n}} \right. \kern-\nulldelimiterspace} n})^2 [1 - ({{j_{1,v}^2 } \mathord{\left/ {\vphantom {{j_{1,v}^2 } {12}}} \right. \kern-\nulldelimiterspace} {12}})n^{ - 1} + ({{j_{1,v}^2 } \mathord{\left/ {\vphantom {{j_{1,v}^2 } {700)( - 3 + 2j_{1,v}^2 )n^{ - 4} }}} \right. \kern-\nulldelimiterspace} {700)( - 3 + 2j_{1,v}^2 )n^{ - 4} }}} \\ { + ({{j_{1,v}^2 } \mathord{\left/ {\vphantom {{j_{1,v}^2 } {20160)(40 + 4j_{1,v}^2 - j_{1,v}^4 }}} \right. \kern-\nulldelimiterspace} {20160)(40 + 4j_{1,v}^2 - j_{1,v}^4 }})n^{ - 6} + \cdot \cdot \cdot ]} \\ {u_n (n - v) \sim 1 - ({{j_{0,v}^2 } \mathord{\left/ {\vphantom {{j_{0,v}^2 } 4}} \right. \kern-\nulldelimiterspace} 4})n^{ - 2} + ({{j_{0,v}^2 } \mathord{\left/ {\vphantom {{j_{0,v}^2 } {48)( - 2 + j_{0,v}^2 )n^{ - 4} }}} \right. \kern-\nulldelimiterspace} {48)( - 2 + j_{0,v}^2 )n^{ - 4} }}} \\ { + ({{j_{0,v}^2 } \mathord{\left/ {\vphantom {{j_{0,v}^2 } {2880)(2 + 9j_{0,v}^2 - 2j_{0,v}^4 )n^{ - 6} + \cdot \cdot \cdot }}} \right. \kern-\nulldelimiterspace} {2880)(2 + 9j_{0,v}^2 - 2j_{0,v}^4 )n^{ - 6} + \cdot \cdot \cdot }}} \\ \end{array} $$ asn→∞v fixed, wherej k,v denotes thevth zero of the Bessel functionJ k(z)  相似文献   

18.
Local Ward identities are derived which lead to the mean-field upper bound for the critical temperature for certain multicomponent classical lattice systems (improving by a factor of two an estimate of Brascamp-Lieb). We develop a method for accurately estimating lattice Green's functionsI d yielding 0.3069<I 4<0.3111 and the global bounds (d?1/2)?<I d <(d?1)? for alld?4. The estimate forI d implies the existence of a critical length for classical lattice systems with fixed length spins. Forv-component spins with fixed lengthb on the lattice ? d ,v=1, 2, 3, 4, the critical temperature for spontaneous magnetization satisfies $$\frac{{2Jb^2 }}{k}\frac{{d - 1}}{v}< T{}_c \leqslant \frac{{2Jb^2 }}{k}\frac{d}{v} for d \geqslant 4$$ ford4 Using GHS or generalized Griffiths' inequalities, we find that the upper bounds on the critical temperature extend to certain classical and quantum systems with unbounded spins. Absence of symmetry breakdown at high temperature for quantum lattice fields follows from bounding the energy density by a multiple ofkT. Path space techniques for finite degrees of freedom show that the high-temperature limit is classical.  相似文献   

19.
There are various diagrams leading to neutrinoless double beta decay in left?Cright symmetric theories based on the gauge group SU(2) L ×SU(2) R . All can in principle be tested at a linear collider running in electron?Celectron mode. We argue that the so-called ??-diagram is the most promising one. Taking the current limit on this diagram from double beta decay experiments, we evaluate the relevant cross section $e^{-} e^{-} \to W^{-}_{L} W^{-}_{R}$ , where $W^{-}_{L}$ is the Standard Model W-boson and $W^{-}_{R}$ the one from SU(2) R . It is observable if the life-time of double beta decay and the mass of the W R are close to current limits. Beam polarization effects and the high-energy behaviour of the cross section are also analyzed.  相似文献   

20.
We calculate the decay rate for the processZ Boson→W Boson+fermion+antifermion. The result is applied to compute the decay rates for \(Z \to W^ + + l + \bar v_l \) ,l=e, μ or τ andZ→W ++anything in the Weinberg-Salam model. At the present experimental value of sin2 θ w=0.23 the branching ratios for the above processes are \(\Gamma (Z \to W^ + l\bar v_l )/\Gamma (Z \to all) \simeq 9 \times 10^{ - 9} \) and Γ(Z→W ++anything)/Γ(Z→all)?8×10?8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号