首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Activated carbon for supercapacitor electrode was prepared from polyaniline using chemical activation with ZnCl2. The morphology, surface chemical composition, and surface area of the as-prepared carbon materials were investigated by scanning electron microscope, atomic force microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller measurement, respectively. Electrochemical characteristics were evaluated by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy tests in 6.0?mol?L?? KOH aqueous solution. The electrochemical measurements showed that ZnCl2 activation led to better capacitive performances. The activated carbon presented a high-specific gravimetric capacitance of 174?F?g??, with rectangular cyclic voltammetry curves at a scan rate of 2?mV?s??, and it remained 93% even at a high scan rate of 50?mV?s??. These demonstrated that activated carbon would be a promising electrode material for supercapacitors.  相似文献   

2.
In this study, an oxadiazole multi-wall carbon nanotube-modified glassy carbon electrode (OMWCNT?GCE) was used as a highly sensitive electrochemical sensor for hydrazine determination. The surface charge transfer rate constant, k s, and the charge transfer coefficient, ??, for electron transfer between GCE and electrodeposited oxadiazole were calculated as 19.4?±?0.5?s?1 and 0.51, respectively at pH?=?7.0. The obtained results indicate that hydrazine peak potential at OMWCNT?GCE shifted for 14, 109, and 136?mV to negative values as compared with oxadiazole-modified GCE, MWCNT?GCE, and activated GCE surface, respectively. The electron transfer coefficient, ??, and the heterogeneous rate constant, k??, for the oxidation of hydrazine at OMWCNT?GCE were also determined by cyclic voltammetry measurements. Two linear dynamic ranges of 0.6 to 10.0???M and 10.0 to 400.0???M and detection limit of 0.17???M for hydrazine determination were evaluated using differential pulse voltammetry. In addition, OMWCNT?GCE was shown to be successfully applied to determine hydrazine in various water samples.  相似文献   

3.
A nano-composite consisting of amine functionalized multi-walled carbon nanotubes and a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) was prepared and used for modification of glassy carbon electrode. By immobilizing choline oxidase (ChOx) on the modified electrode, the enzyme direct electron transfer has been achieved. The modified electrode exhibited a pair of well-defined cyclic voltammetric peaks at a formal potential of ?0.395?V versus Ag/AgCl in 0.2?M phosphate buffer solution at pH 7.0. This peak was characteristic of ChOx-FAD/FADH2 redox couple. The electrochemical parameters such as charge transfer coefficient (??) and apparent heterogeneous electron transfer rate constant (k s) were estimated to be 0.36 and 2.74?s?1, respectively. When the enzyme electrode was examined for the detection of choline, a relatively high sensitivity (2.59???A?mM?1) was obtained. Under the optimized experimental conditions, choline was detected in the concentration range from 6.9?×?10?3 to 6.7?×?10?1?mM with a detection limit of 2.7???M. The peak currents of ChOx were reasonably stable and retained 90% of its initial current after a period of 2?months.  相似文献   

4.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

5.
A simple but highly snesitive electrochemical sensor for the determination of dihydromyricetin (DMY) based on graphene‐Nafion nanocomposite film modified Glassy carbon electrode (GCE) was reported. The characteristic of the sensor was examined by scanning electron microscopic (SEM) and electrochemical impedance spectroscopy (EIS). Compares with bare GCE, pre‐anodized glassy carbon electrode (GCE(ox)) and Nafion modified electrode, the sensor exhibited the more superior ability of detecting DMY, due to the synergetic graphene and Nafion. Other, the dependence of the current on pH, instrumental parameters, accumulation time and potential were investigated to optimize the experimental conditions in the determination of DMY. Under the selected conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 8.0 × 10?8 ~ 2.0 × 10?5 mol L?1 with a detection limit of 2.0 × 10?8 mol L?1. And, the method was also applied successfully to detect DMY in Ampelopsis grossedentata samples.  相似文献   

6.
The electrochemical determination of uranyl was investigated by using carbon paste electrode modified with a Schiff base namely N,N??-bis(salicylidene)-2-hydroxy-phenylmethanediamine (SHPMD/CPE) and also in the presence of carbon nanotube (SHPMD/CNT/CPE). The both modified electrodes displayed an irreversible peak at E pa?=?0.798?V versus Ag/AgCl. The electrocatalytic reduction of uranyl has been studied on SHPMD/CNT/CPE, using cyclic and differential pulse voltammetry, chronocoulometry and linear sweep techniques. Electrochemical parameters including the diffusion coefficient (D), the electron transfer coefficient (??), the ionic exchange current (i) and the redox reaction rate constant (K) were determined for the reduction of uranyl on the surface of the modified electrodes. Linear range concentration is 0.002?C0.6???mol?L?1 and the detection limit of uranyl is 0.206?nmol?L?1. The proposed method was used to detect uranyl in natural waters and good recovery was achieved.  相似文献   

7.
《Electroanalysis》2018,30(8):1791-1800
We report the effect of electrochemical anodization on the properties of monolayer graphene as the main aim of this research and consequently using the resulting label‐free impedimetric biosensor for DNA sequences detection. Monolayer graphene was grown by chemical vapor deposition (CVD) with methane as precursor on copper foil, transferred onto a glassy carbon electrode and electrochemically anodized. Raman spectroscopy and X‐Ray photo electron spectroscopy revealed enhancement of defect density, roughness and formation of C−O−C, C−O−H and C=O functional groups after anodization. Amine‐terminated poly T probe was linked covalently to the carboxylic groups of anodized graphene by the zero‐length linker to fabricate the impedance‐based DNA biosensor. The anodized graphene electrode demonstrated a superior performance for electrochemical impedance detection of DNA. The DNA biosensor showed a large linear dynamic range from 2.0×10−18 to 1.0×10−12 M with a limit of detection of 1.0×10−18 M using electrochemical impedance spectroscopy (EIS) method. Equivalent circuit modeling shows that DNA hybridization is detected through a change in charge transfer resistance.  相似文献   

8.
A novel copper(II)-selective electrode based on graphite oxide/imprinted polymer composite was developed for the electrochemical monitoring of copper(II) (Cu2+) ions. The electrode exhibited highly selective potentiometric response to Cu2+ with respect to common alkaline, alkaline earth and heavy metal cations. The composite composition studies indicated that the most suitable composite composition performing the most promising potentiometric properties was 20.0% ionophore (Cu2+-ion imprinted polymer), 10.0% paraffin oil, 5.0% multiwalled carbon nanotubes, and 65.0% graphite oxide. The fabricated electrode exhibited a linear response to Cu2+ over the concentration range of 1.0?×?10??6–1.0?×?10??1?M (correlation coefficient of 0.9998) with a sensitivity of 26.1?±?0.9?mV decade??1. The detection limit of the fabricated electrode was determined to be 4.0?×?10??7?M. The electrode worked well in the pH range of 4.0–8.0. The electrode had stable, reversible and fast potentiometric response (3?s). In addition, the electrode had a lifetime of more than 1 year. The analytical applications of the proposed electrode were performed using as an indicator electrode for the potentiometric titration of Cu2+ with ethylene diamine tetraacetic acid solution and for the determination of Cu2+ of spiked river, dam, and tap water samples. The obtained results for potentiometric titration and water samples were satisfactory.  相似文献   

9.
The electrochemical properties of anthraquinone monosulfonate (AQS) adsorbed on the basal plane of chemically-reduced graphene oxide (RGO) by π–π stacking interaction were investigated. The AQS/RGO nanocomposites were synthesized via a simple reduction–adsorption method and characterized with various techniques, and the surface concentration of AQS on the basal plane of RGO was estimated to be 1.72?×?10?12 mol cm?2. Electrochemical tests showed that the AQS/RGO nanocomposites accelerated the heterogeneous electron transfer, when ferro/ferricyanide was used as a redox probe, and RGO facilitated the electron transfer between AQS and the surface of glassy carbon electrode, producing a well-defined redox couple centered at ?0.490 V versus SCE at neutral medium. Compared with AQS and RGO modified glassy carbon (GC) electrode, the AQS/RGO nanocomposites showed better electrocatalytic activity towards oxygen reduction reaction. Rotating disk electrode data showed that the reduction of O2 on AQS/RGO/GC electrode underwent a two-electron process to H2O2 at low overpotential and shifted to four-electron reduction to H2O at relatively high overpotential. The present work demonstrates that AQS can be an efficient catalyst when noncovalently functionalized on the basal plane of RGO for electrochemical applications.  相似文献   

10.
Phytic acid (PA) with its unique structure was attached to a glassy carbon electrode (GCE) to form PA/GCE modified electrode which was characterized by electrochemical impedance. The electrochemical behavior of cytochrome c (Cyt c) on the PA/GCE modified electrode was explored by cyclic voltammetry and differential pulse voltammetry. The Cyt c displayed a quasi-reversible redox process on PA modified electrode pH 7.0 phosphate buffer solution with a formal potential (E 0′) of 57 mV (versus Ag/AgCl). The peak currents were linearly related to the square root of the scan rate in the range of 20–120 mV·s?1. The electron transfer rate constant was determined to be 12.5 s?1. The PA/GCE modified electrode was applied to the determination of Cyt c, in the range of 5?×?10?6 to 3?×?10?4 M, the currents increase linearly to the Cyt c concentration with a correlation coefficient 0.9981. The detection limit was 1?×?10?6 M (signal/noise?=?3).  相似文献   

11.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

12.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

13.
We reported previously the superiority of electrochemical characteristics of the mechanical mixtures of micrometer LiMn2O4 spinel with multiwall carbon nanotubes (MCNT) over those of spinel compositions with natural graphite in the prototypes of the Li-ion batteries. In the presented work, we extended the investigation of the kinetic and interfacial characteristics of the spinel in the redox reaction with the Li ion. Slow-rate scan cyclic voltammetry and impedance spectroscopy were used. Carbon electroconductive fillers, their nature, and particle sizes play the key role in the efficiency of the electrochemical transformation of spinel in Li-ion batteries. Electrodes based on the composition of the spinel and MCNT show a good cycling stability and efficiency at the discharge rate of 2C. Chemical diffusion coefficients of Li ion, which were determined in spinel composite with MCNT and graphite near potentials of peak activity in deintercalation/intercalation processes, change within one order of 10?12 cm2 s?1. The value of this chemical diffusion coefficient for the composition of the spinel with MCNT and with graphite change within one order of 10?12 cm2 s?1. The data of the impedance spectroscopy shows that the resistance of surface films on the spinel (R s) is low and does not considerably differ from R s in composites of the spinel with MCNT and graphite. The investigation shows that the resistance of charge transport (R ct) through the boundary of surface film/spinel composite is dependent on the conductive filler. Value of R ct in spinel electrode decreases by the factor of thousand in the presence of carbon filler. Exchange current of spinel electrode increases from the order of 10?7 to 10?4 A cm?2 under the influence of MCNT. At the potentials of maximum activity in deintercalation processes, exchange current of spinel composite electrode with MCNT is 2.2–3.0 times more than one of the composite with graphite. Determining role of the resistance of charge transport in electrode processes of spinel is established. The value of R ct is dependent on the resistance in contacts between spinel particles and also between particles and current collectors. Contact resistance decreases under the influence of MCNT with more efficiency than under the influence of graphite EUZ-M because of small the size of its particles with high surface area of the MCNT.  相似文献   

14.
Graphene research is currently at the frontier of electrochemistry. Many different graphene‐based materials are employed by electrochemists as electrodes in sensing and in energy‐storage devices. Because the methods for their preparation are inherently different, graphene materials are expected to exhibit different electrochemical behaviors depending on the functionalities and density of defects present. Electrochemical treatment of these “chemically modified graphenes” (CMGs) represents an easy approach to alter surface functionalities and consequently tune the electrochemical performance. Herein, we report a preliminary electrochemical characterization of four common chemically modified graphenes, namely: graphene oxide, graphite oxide, chemically reduced graphene oxide, and thermally reduced graphene oxide. These CMGs were compared with graphite as a reference material. Cyclic voltammetry was used to ascertain the chemical functionalities present and to understand the potential ranges in which the materials were electroactive. Electrochemical treatment with either an oxidative or a reductive fixed potential were then carried out to activate these chemically modified graphenes. The effects of such electrochemical treatments on their electrocatalytic properties were then investigated by cyclic voltammetry in the presence of well‐known redox probes, such as [Fe(CN)6]4?/3?, Fe3+/2+, [Ru(NH3)6]2+/3+, and ascorbic acid. Thermally reduced graphene oxide exhibited the best electrochemical behavior amongst all of the CMGs, with the fastest rate of heterogeneous electron transfer (HET) and the lowest overpotentials. These findings will have far‐reaching consequences for the evaluation of different CMGs as electrode materials in electrochemical devices.  相似文献   

15.
We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0.5–800?ng?mL?1, and the detection limit is 0.1?ng?mL?1 (at an S/N of 3). The immunosensor is sensitive and stable.
Figure
We report on the modification of a graphene paste electrode with gold nanoparticles and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen. The immunosensor is sensitive and stable.  相似文献   

16.
A non-enzymatic amperometric sensor is developed based on the graphite electrode modified with functionalized graphene for the determination of β, d (+)-glucose. Cyclic voltammetry and electrochemical impedance spectroscopy techniques are used to study the behavior. Atomic force microscopy was used to study the surface topography of the working electrode before and after its modification. The sensor enabled the direct electrochemical oxidation of β, d (+)-glucose in alkaline medium and responded linearly to the analyte over the range from 0.5?×?10?3 to 7.5?×?10?3?M with a limit of detection of 10?μM. The sensor is found to exhibit a better sensitivity of 28.4?μA?mM?1?cm?2, good stability, and shelf life. The sensitivity of the sensor to β, d (+)-glucose was not affected by the commonly co-existing interfering substances such as l-ascorbic acid, dopamine, uric acid, and acetaminophen.  相似文献   

17.
Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of chemical vapor deposition with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene as catalyst. The electrochemical responses of MWCNT-based films towards the ferrocyanide/ferricyanide, [Fe(CN)6]3?/4? redox couple were probed by means of cyclic voltammetry and electrochemical impedance spectroscopy at 25.0?±?0.5?°C. Both MWCNT-based films exhibit Nernstian response towards [Fe(CN)6]3?/4? with some slight kinetic differences. Namely, heterogeneous electron transfer rate constants lying in ranges of 2.69?×?10?2?C1.7?×?10?3 and 9.0?×?10?3?C2.6?×?10?3?cm·s?1 were obtained at v?=?0.05?V·s?1 for MWCNTACN and MWCNTBZ, respectively. The detection limit of MWCNTACN, estimated to be about 4.70?×?10?7?mol·L?1 at v?=?0.05?V·s?1, tends to become slightly poorer with the increase of the scan rate, namely at v?=?0.10?V·s?1 the detection limit of 1.70?×?10?6?mol·L?1 was determined. Slightly poorer response ability was exhibited by MWCNTBZ; specifically the detection limits of 1.57?×?10?6 and 4.35?×?10?6?mol·L?1 were determined at v?=?0.05 and v?=?0.10?V·s?1, respectively. The sensitivities of MWCNTACN and MWCNTBZ towards [Fe(CN)6]3?/4? were determined as 1.60?×?10?7 and 1.51?×?10?7?A·L·mol?1·cm?2, respectively. The excellent electrochemical performance of MWCNTACN is attributed to the presence of incorporated nitrogen in the nanotube??s structure.  相似文献   

18.
The present work is based on the use of a redox mediator containing an azo group for the selective determination of dopamine in the presence of uric acid and ascorbic acid by electrochemical method. A modified electrode was prepared by electrochemical polymerization of the poly 2-napthol orange film (P2NO) on the paraffin wax-impregnated graphite electrode (PIGE) by applying potential between ?0.6 and 0.8 V at scan rate of 50 mV s?1 for 30 segments. The modified P2NO film electrode was characterized by ATR-IR spectroscopy, FE-SEM, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), hydrodynamic voltammetry (HDV), and chronoamperometry (CA). The P2NO film modified electrode exhibited selective determination of dopamine in the presence of uric acid and ascorbic acid, and the electrocatalytic activity for oxidation of dopamine was excellent. The linear range for the determination of dopamine was 0.6 to 250 μM with a limit of detection of 0.13 μM. The modified P2NO electrode showed good stability and reproducibility. The modified electrode was used for real sample analysis such as human blood serum, rat blood serum, and pharmaceutical samples (dopamine hydrochloride injection). The results obtained were found to be satisfactory.  相似文献   

19.
Here is reported the novel determination of hydrogen peroxide by electrochemiluminescence using a chitosan–graphene composite film doped cadmium-tellurium quantum dot modified glassy carbon electrode. The cadmium-tellurium quantum dots were studied by absorption and fluorescence spectroscopy. Scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the structure morphology of the composite matrix. The electrochemiluminescence emission was linear with the concentration of hydrogen peroxide in the range of 3.5?×?10?7 to 1.1?×?10?5?M with a determination limit of 2.1?×?10?7?M. Furthermore, the modified electrode showed excellent reproducibility and stability.  相似文献   

20.
Reduced graphene oxide was synthesized by simple chemical processing of graphite. Electron microscopy investigations of synthesized graphene showed slightly folded transparent sheets with a few square micrometers dimension. Poly(ortho-phenylenediamine)/graphene/Pt electrode was electrochemically fabricated in a 2.0-M H2SO4 solution by means of multiple potential cycling. Due to the catalytic effect of graphene on the oxidative electropolymerization of ortho-phenylenediamine, the ortho-phenylenediamine/graphene (PoPD/GR) nanocomposite showed greatly enhanced electrical properties and excellent capacitive behavior. Electrochemical impedance spectroscopy, galvanostatic charge/discharge curves, and voltammetric investigations revealed that PoPD/GR nanocomposite represented good capacitive behavior with a specific capacitance as high as 308.3 F g?1 at 0.1 A g?1. It is almost three times higher than that of pure graphene (111.7 F g?1). In addition, the nanocomposite electrode retained more than 99 % of the initial capacity after 1,500 cycles at a current density of 1 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号