首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aminoalcohols 1-HOCR2-2-NMe2C6H4 [R = Ph (1), R = C6H11 (2)] and 1-HOCPh2CH2-2-NMe2C6H4 (3) react with ZnCl2 in tetrahydrofuran to give the alcohol adducts [ZnCl2(THF){1-HOCR2-2-NMe2C6H4}] [R = Ph (4), R = C6H11 (5)] and [ZnCl2(THF){1-HOCPh2CH2-2-NMe2C6H4}] (6). The complexes 46 were characterized by 1H and 13C NMR spectroscopy, and 5 was also structurally characterized by X-ray crystallography.  相似文献   

2.
The structure of CdBr2(C7H5N2CH2COPh)4 has been determined by X-ray crystallography. It crystallizes in the tetragonal system, space group P4/n, with lattice parameters a = 14.904(3) ?, b = 14.904(3) ?, c = 11.817(2) ?, and Z = 2. The crystal structure consists of monomeric molecules of [CdBr2(C7H5N2CH2COPh)4] with distorted octahedron geometry for the CdBr2N4 chromophore. It is also characterized by elemental analysis, IR spectrum, electronic spectrum, and thermogravimetric-differential scanning calorimetry (TG-DSC).  相似文献   

3.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O) n (n = 7−10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer). Supported by the National Natural Science Foundation of China (Grant No. 20373021)  相似文献   

4.
The thermal decomposition mechanisms and the intermediate morphology of MgCl2·6H2O and MgCl2·H2O were studied using integrated thermal analysis, X-ray diffraction, scanning electron microscope and chemical analysis. The results showed that there were six steps in the thermal decomposition of MgCl2·6H2O: producing MgCl2·4H2O at 69 °C, MgCl2·2H2O at 129 °C, MgCl2·nH2O (1 ≤ n ≤ 2) and MgOHCl at 167 °C, the conversion of MgCl2·nH2O (1 ≤ n ≤ 2) to Mg(OH)Cl·0.3H2O by simultaneous dehydration and hydrolysis at 203 °C, the dehydration of Mg(OH)Cl·0.3H2O to MgOHCl at 235 °C, and finally the direct conversion of MgOHCl to the cylindrical particles of MgO at 415 °C. To restrain the sample hydrolysis and to obtain MgCl2·H2O, MgCl2·6H2O was first calcined in HCl atmosphere until 203 °C when MgCl2·H2O was obtained; HCl gas was then turned off and the calcination process continued, producing Mg3Cl2(OH)4·2H2O calcined at 203 °C, Mg3(OH)4Cl2 at 220 °C and MgO at 360 °C. The temperature of producing MgO from calcination of MgCl2·H2O was lower (360 °C) than that from MgCl2·6H2O (415 °C) because of its more reactive intermediate products: the irregular shape and tiny needle-like Mg3Cl2(OH)4·2H2O particles and the uneven surface porous Mg3(OH)4Cl2 particles. The MgO particles obtained at 360 °C had a flake structure.  相似文献   

5.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T21A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4 are substantiated; further support is provided for the 1T11A1 assignment of the 3600 Å absorption band of MnO4. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state.  相似文献   

6.
The enthalpies of dissolution in water of new ternary complexes of four late trivalent lanthanide ions Ln(Gly)4Im(ClO4)3·nH2O (Ln=Gd, Tb, Dy, Y; Gly: glycine; Im: imidazole and n=1 or 2) were measured by means of a Calvet microcalorimeter. Empirical formulae for the calculation of the enthalpies of dissolution (ΔdissH), relative apparent molar enthalpies (ΔdissH (app)), relative partial molar enthalpies (ΔdissH (partial)) and enthalpies of dilution (ΔdilH1,2) were obtained from the experimental data of the enthalpies of dissolution of these complexes. The plot of ΔdissHmΘ, ΔdissH (app) and ΔdissH (partial) versus the values of the ionic radius of the lanthanide element (r) showed a grouping effect of the lanthanide elements, indicating that the coordinated bond between the lanthanide ions and the ligands has some covalent character. The unknown value of the standard enthalpy of dissolution for the similar complex: Ho(Gly)4Im(ClO4)3·H2O was estimated according to the plot of ΔdissHmΘ versus r.  相似文献   

7.
Trichlorides of the lanthanide elements Ln=Ce–Lu form: (a) isotypic hexahydrates LnCl3·6H2O with a coordination number (CN) 8 for the Ln3+ ions. (b) Two isotypic groups of trihydrates LnCl3·3H2O, in the first group Ln=Ce-Dy the CN is 8; the structure of the second group Ln=Er–Lu is unknown. With Ho no trihydrate exists; a dihydrate is formed. (c) Two isotypic groups of monohydrates LnCl3·H2O with unknown structure – Ln=Ce–Dy and Ln=Ho–Lu. For all compounds and for anhydrous chlorides LnCl3 solution enthalpies were measured with an isoperibolic calorimeter. The ΔsolH0 values do not depend only on the difference (lattice enthalpies/hydration enthalpies), but also on the state in solution. According to Spedding the CN of the Ln3+ ions against water changes from 9 to 8 between Nd and Sm, causing minima in the series of solution enthalpies. Dihydrates LnCl3·2H2O are found for Ln=Ce, Pr, Nd, Sm and presumably for Eu and Gd. They are not yet well characterised.  相似文献   

8.
The infrared spectra of isotopically dilute (matrix-isolated HDO molecules) isostructural compounds M(HCOO)2·2H2O (M=Mn,Fe,Co,Ni,Zn,Cu) are presented and discussed in the region of the OD stretching modes. According to the structural data the compounds under study are divided into two groups: in M(HCOO)2·2H2O (M=Mn,Ni,Zn) the H2O(1) molecules form stronger hydrogen bonds as compared to H2O(2); in M(HCOO)2·2H2O (M=Fe,Co,Cu) the H2O(2) molecules form stronger hydrogen bonds as compared to the H2O(1) molecules. The influence of the metal–water interactions (synergetic effect) and the unit-cell volumes (repulsion potential of the lattice) on the hydrogen bond strength within the isostructural series is discussed. The wavenumbers of the uncoupled OD stretching modes of the HDO molecules influenced by guest ions (Cu2+ ions matrix-isolated in M(HCOO)2·2H2O and M2+ ions matrix-isolated in Cu(HCOO)2·2H2O) are presented and commented. For example, the analysis of the spectra reveals that when Cu2+ ions are included in the structure of M(HCOO)2·2H2O the hydrogen bonds of the type M–OH2OCHO–Cu are considerably weaker as compared to those of the same type formed when M2+ ions are included in the structure of Cu(HCOO)2·2H2O if the cations remain unchanged.  相似文献   

9.
Summary. 2 [Yb2(NH2)2(Pz)4][Yb(NH3)2(Pz)3 PzH], Pz = pyrazolate anion, PzH = pyrazole, C3H4N2 is obtained by the reaction of ytterbium metal with pyrazole in liquid ammonia and subsequent increase of the temperature to 200°C resulting in the formation of colorless single crystals of the compound. The X-ray single crystal analysis reveals that the structure consists of 2 [Yb2(NH2)2(Pz)4] planes with neutral [Yb(NH3)2(Pz)3 PzH] monomeric molecules that are located between the planes and ytterbium is trivalent. This is the first example of a two-dimensional network structure of an organic amine of the rare earth elements that derives from an electride induced synthesis. The product decomposes under release of ammonia outside its sealed reaction vessel, viz. if the NH3 pressure is removed.  相似文献   

10.
Two new octahedral Cd(II) complexes [Cd(L)2] (1) and {[Cd(LH)2(SCN)2]H2O} (2) [where LH = C14H13N3O] are synthesized using a tridentate hydrazone ligand (LH) and they are characterized by elemental analysis, IR spectra, NMR spectra, thermal studies and finally the structures have been determined by single crystal X-ray diffraction. Complex 1 crystallizes in monoclinic system, space group C2/c with a = 22.565(6) ?, b = 10.252(3) ?, c = 12.187(4) ?, β = 118.851(2), and Z = 4. Complex 2 also crystallizes in the monoclinic system, space group P21/c with a = 9.257(9)?, b = 17.809(2)?, c = 9.548(9)?, β = 107.439(4), and Z = 2. In 1 the ligand binds the Cd(II) ion in tridentate fashion, whereas in 2 it acts as a bidentate ligand.  相似文献   

11.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

12.
De-Dong Wu  Thomas C. W. Mak 《Polyhedron》1994,13(24):3333-3339
Two polymeric mercury(II) halide adducts of an olefinic double betaine, cis-(p-Me2NC5H4N+)2C2(COO)2 (L), have been prepared and characterized by X-ray crystallography. [{Hg2L2Cl4·6HgCl2}n] (1) crystallizes in the monoclinic space group C2/c with Z = 4, and [{Hg2L2Br4·HgBr2}n] (2) in the triclinic space group P with Z = 1. Complexes 1 and 2 are structurally similar, being composed of centrosymmetric fourteen-membered rings and nearly linear HgX2 (X = Cl, Br) moieties that are further inter-linked by weak HgX [HgCl = 2.930–3.136(9) Å, HgBr = 3.057–3.310(6) Å] and HgO [2.64, 2.75(3) Å] bonds to generate a two-dimensional polymeric network.  相似文献   

13.
Interaction of hydrated proton, H5O2+·(H2O)4, in dichloroethane solutions with diphosphine dioxides (L) having methyl (Ph4Me), ethyl (Ph4Et) and polyoxyethylene chains (Ph4PEG) linking two diphenyl phosphine oxide groups has been investigated. A bulky counter ion: chlorinated cobalt(III) bis(dicarbollide), [Co(C2B9H8Cl3)2], minimizes perturbation of the cation. At low concentrations, Ph4Et and Ph4PEG form anhydrous 1:1 complexes with (P)O–H+–O(P) fragment having very strong symmetrical H-bonds. At these conditions Ph4Me form another compound, H5O2+·L(H2O)2, due to lower PO basicity and optimal geometry of the chelate cycle. At higher concentrations, Ph4Me and Ph4Et form isostructural complexes H5O2+·L2, whereas Ph4PEG forms only a 1:1 complex with proton dihydrate, H3O+·H2O. In excess of free Ph4Me and Ph4Et a water molecule is introduced to the first coordination sphere of H5O2+ and the average molar ratio L/H5O2+ of the complexes exceeds 2. The composition of these complexes as a function of L and its concentration is discussed.  相似文献   

14.
We have measured Raman and infrared spectra of α-Ge(HPO4)2·H2O compound at room temperature. The analysis of vibrational modes indicated the presence of two non-equivalent HPO42− units in agreement with 31P nuclear magnetic resonance measurements. A tentative assignment of all the observed modes is proposed based on the previous works reported for other hydrogenphosphate-based compounds.  相似文献   

15.
Trimethylindium reacted with phenyl- and tert-butylhydrazine by the release of methane and the formation of the corresponding dimethylindium hydrazides (1 and 2, respectively). Both products form dimers and possess four-membered In2N2 heterocycles with two exocyclic N-N bonds in their molecular cores. Interestingly, one compound (1) crystallizes with centrosymmetric molecules in which the N-N bonds are located on different sides of the In2N2 ring (C2h), while both N-N bonds are on the same side in 2 (C2v). In contrast, the reaction of tri(tert-butyl)indium with tert-butylhydrazine yielded a quite unexpected product. Partial decomposition occurred, and in a low yield the adduct of tribenzylindium with the unchanged tert-butylhydrazine was isolated. In a remarkable reaction, the trialkylindium derivative did not react with the relatively acidic hydrazine, but by the release of the corresponding alkane with the solvent toluene.  相似文献   

16.
Gas-phase cyclometalation of [ArNi(PPh3)n]+ (n = 1, 2) complexes have been studied by ESI-MS/MS. The electron-donating substituents of aromatic iodides in the para position were found to inhibit the cyclometalation process of losing ArH, while the electron-withdrawing substituents in the para position were found to enhance it. These results indicate that the cyclometalation process of losing ArH is favored by electron-deficient aromatic groups. In addition, the detailed dissociation pathways of the cationic nickel complexes were studied, and among these pathways, the process of aryl-aryl interchange was also found to proceed in ESI-MS/MS.  相似文献   

17.
The equilibrium structures, binding energies, and vibrational spectra of the clusters CH3F(HF)1 n 3 and CH2F2(HF)1 n 3 have been investigated with the aid of large-scale ab initio calculations performed at the Møller–Plesset second-order level. In all complexes, a strong C–FH–F halogen–hydrogen bond is formed. For the cases n = 2 and n = 3, blue-shifting C–HF–H hydrogen bonds are formed additionally. Blue shifts are, however, encountered for all C–H stretching vibrations of the fluoromethanes in all complexes, whether they take part in a hydrogen bond or not, in particular also for n = 1. For the case n = 3, blue shifts of the ν(C–H) stretching vibrational modes larger than 50 cm−1 are predicted. As with the previously treated case of CHF3(HF)1 n 3 complexes (A. Karpfen, E. S. Kryachko, J. Phys. Chem. A 107 (2003) 9724), the typical blue-shifting properties are to a large degree determined by the presence of a strong C–FH–F halogen–hydrogen bond. Therefore, the term blue-shifted appears more appropriate for this class of complexes. Stretching the C–F bond of a fluoromethane by forming a halogen–hydrogen bond causes a shortening of all C–H bonds. The shortening of the C–H bonds is proportional to the stretching of the C–F bond.  相似文献   

18.
Data on the solubility of manganese sulphate monohydrate in water, and in aqueous alcohols is essential for salting-out crystallisation studies. The solubilities of the quaternary system MnSO4·H2O + MgSO4·7H2O + H2O + EtOH were determined in the temperature range 293.2–323.2 K over the ethanol mole fraction range of 0.00–0.12. The solubility data were used for modelling with the modified extended electrolyte non-random two-liquid (NRTL) equation. The present extension uses ion-specific parameters instead of the electrolyte-specific NRTL binary interaction parameters. This approach has feasibility for many electrolytes and mixed aqueous solution systems in principle. The model was found to correlate the solubility data satisfactorily.  相似文献   

19.
As a novel family of macrocyclic molecules,cucurbit[n]urils(CB[n]s) have emerged as promising building blocks of supramolecular nano drug delivery systems(SNDDS) in recent years.Direct encapsulation of amphiphilic guests by CB[6] and CB[7] can modulate their amphiphilicity,resulting in formation of supramolecular amphiphiles that self-assemble into supramolecular nanoparticles for drug delivery.Additionally,CB[n]'s host-guest chemistry on the surface of mesoporous nanoparticles makes CB[n] an ideal blocking agent to control drug release from delivery vehicles.These SNDDS possess intrinsic stimuli responsiveness towards external guest or host,which can further incorporate re s ponsiveness to a variety of other stimuli including pH,thermal,redox,photo and enzyme,to realize multiple stimuli-responsive drug release.Moreover,the recent breakthrough in direct functionalization of CB[n]s has provided a feasible method for preparing superior CB[6] and CB[7] derivatives that can be employed to build multifunctional SNDDS with unoccupied macrocycles located on surface,which could be decorated with various functional "tags" through host-guest chemistry.In this review,we summarized the recent progress of CB[6] and CB[7] based SNDDS through formation of supramolecular amphiphiles,supramolecular nanovalves as well as supramolecularly tailorable surface,which we hope to further promote the development of CB[n]s family as building blocks for advanced SNDDS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号