首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Self-assembled (SA) films (PMP, M = Ce3+ or Ce4+) of 3,4,9,10-perylenetetracarboxylic acid (PTA) on nanocrystalline TiO2 films with Ce3+ or Ce4+ as a bridge were fabricated and characterized with UV-Vis, IR, and XPS synchrotron radiation photoelectron spectroscopy (SRPES) which gave the HOMO energy levels for the SA films. It was shown that thin-layer sandwich-type solar cells based on these SA films possess good properties for photoelectric conversion. While PTA-loaded TiO2 electrode (P) generated 26.9% of incident monochromatic photon-to-electron conversion efficiency (IPCE), PMP-sensitized TiO2 electrodes yielded 55.8% and 39.1% for Ce4+ and Ce3+ respectively. PMP films can be considered as a kind of complexes whose HOMO energy levels were proved to be higher than that of film P, which is one of the major reasons for the increase in IPCE from film P to film PMP.  相似文献   

2.
Self-assembled films (SA films) of 3,4,9,10-perylenetetracarboxylic acid (PTA) (Film P) and II B group metal-ion-bridged PTA (Film PMP, M=Zn2+, Cd2+, or Hg2+) were fabricated on nanocrystalline TiO2 electrodes and characterized with UV–VIS and IR spectra and XPS. Compared with Film P sensitized solar cell, Grätzel cells based on individual PMP electrodes are more efficient regarding photocurrent generation. Synchrotron radiation photoelectron spectroscopy (SRPES) study reveals that those HOMO energy levels of PMP films are greater than that of Film P. The higher HOMO energy levels will lead to higher excited state energy levels that benefit electron injection, and hence, increase efficiencies for photocurrent generation. In view of the invariable valence of Zn2+, Cd2+, and Hg2+ ions, electron injection should be attributed to ligand, but not to the central metal ions, like the case of Ru(II)–bipyridyl complex.  相似文献   

3.
The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.  相似文献   

4.
Solar cells based on swift self-assembled sensitizer bis(tetrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenium(II) (N719) on double layers of 12 + 4 microm thick nanocrystalline TiO2 films exhibit the incident monochromatic photon-to-current conversion efficiency (IPCE) 90% and show a short circuit current density of 17 mA cm(-2), 750 mV open circuit potential and 0.72 fill factor yielding power conversion efficiencies over 9.18% under AM 1.5 sun. For the first time highest power conversion efficiencies are obtained for dye sensitized solar cells using a swift self-assembled procedure.  相似文献   

5.
郝彦忠  王伟 《化学学报》2007,65(6):489-493
采用原位化学法在纳米结构TiO2膜上制备了量子点CdS, PbS (Q-CdS, Q-PbS), 并用电化学方法在TiO2/Q-CdS, TiO2/Q-PbS表面聚合3-甲基噻吩[poly(3-Methylthiophene, PMeT)]. 用光电化学方法研究了PMeT修饰Q-CdS, Q-PbS连接TiO2纳米结构膜, 实验结果表明, PMeT和Q-CdS, Q-PbS单独修饰纳米结构TiO2电极和PMeT修饰Q-CdS, Q-PbS连接纳米结构TiO2电极的光电流产生的起始波长都向长波方向移动; 一定条件下在可见光区光电转换效率均较纳米结构TiO2的光电转换效率有明显的提高; 聚3-甲基噻吩(PMeT)与Q-CdS, Q-PbS连接的纳米结构TiO2之间存在p-n异质结. 在一定条件下p-n异质结的存在有利于光生电子/空穴的分离, 在本文实验条件下PMeT修饰Q-CdS, Q-PbS连接纳米结构TiO2电极最高的单色光的光电转换效率分别为11%和7%.  相似文献   

6.
The mechanism of enhancing the light harvesting efficiency of dye-sensitized TiO(2) solar cells by coupling TiO(2) inverse opals or disordered scattering layers to conventional nanocrystalline TiO(2) films has been investigated. Monochromatic incident photon-to-current conversion efficiency (IPCE) at dye-sensitized TiO(2) inverse opals of varying stop band wavelengths and at disordered titania films was compared to the IPCE at bilayers of these structures coupled to nanocrystalline TiO(2) films and to the IPCE at nanocrystalline TiO(2) electrodes. The results showed that the bilayer architecture, rather than enhanced light harvesting within the inverse opal structures, is responsible for the bulk of the gain in IPCE. Several mechanisms of light interaction in these structures, including localization of heavy photons near the edges of a photonic gap, Bragg diffraction in the periodic lattice, and multiple scattering events at disordered regions in the photonic crystal or at disordered films, lead ultimately to enhanced backscattering. This largely accounts for the enhanced light conversion efficiency in the red spectral range (600-750 nm), where the sensitizer is a poor absorber.  相似文献   

7.
Titanium dioxide (TiO(2)) photoelectrodes with micro/nano hierarchical branched inner channels have been prepared by an electrohydrodynamic (EHD) technique and assembled to form dye-sensitized solar cells (DSSCs). Excellent penetration of ionic-liquid electrolytes and enhanced light harvesting in the longer wavelength region are realized within the composite-structure electrode, thus a better fill factor (ff) of 75.3 % and higher conversion efficiency (eta) of 7.1 % are obtained for viscous ionic-liquid electrolytes compared to pure nanostructured films. Hierarchical branched channels in the photoanodes can efficiently improve the transport properties of redox-active species in viscous electrolytes, which is demonstrated by electrical impedance spectroscopy (EIS). The incident monochromatic photon-to-electron conversion efficiency (IPCE) shows that enhanced light scattering in the composite film is of benefit for light harvesting and thus for solar energy conversion efficiency.  相似文献   

8.
Films comprised of 4 microm long titanium dioxide nanotube arrays were fabricated by anodizing Ti foils in an ethylene glycol based electrolyte. A carboxylated polythiophene derivative was self-assembled onto the TiO2 nanotube arrays by immersing them in a solution of the polymer. The binding sites of the carboxylate moiety along the polymer chain provide multiple anchoring sites to the substrate, making for a stable rugged film. Backside illuminated liquid junction solar cells based on TiO2 nanotube films sensitized by the self-assembled polymeric layer showed a short-circuit current density of 5.5 mA cm-2, a 0.7 V open circuit potential, and a 0.55 fill factor yielding power conversion efficiencies of 2.1% under AM 1.5 sun. A backside illuminated single heterojunction solid state solar cell using the same self-assembled polymer was demonstrated and yielded a photocurrent density as high as 2.0 mA cm-2. When a double heterojunction was formed by infiltrating a blend of poly(3-hexylthiophene) (P3HT) and C60-methanofullerene into the self-assembled polymer coated nanotube arrays, a photocurrent as high as 6.5 mA cm-2 was obtained under AM 1.5 sun with a corresponding efficiency of 1%. The photocurrent action spectra showed a maximum incident photon-to-electron conversion efficiency (IPCE) of 53% for the liquid junction cells and 25% for the single heterojunction solid state solar cells.  相似文献   

9.
TiO2与ZnO复合纳米结构电极的光电化学研究   总被引:2,自引:0,他引:2  
利用尿素加压共沉淀法以Ti(SO4)2与Zn(NO3)2为原料制备了TiO2-ZnO复合纳米粒子, 其纳米结构电极的光电化学研究结果表明, 反应物摩尔比为3∶1, 于530 ℃煅烧制备的复合纳米结构电极的光电转换效率最高. 对吸附染料RuL2(SCN)2∶2TBA的纳米结构TiO2和各种复合纳米粒子的纳米结构电极进行光电研究的结果表明, 染料对各纳米结构电极都起到了敏化作用, 其中也是由反应物摩尔比为3∶1, 于530 ℃煅烧制备的纳米结构电极的光电转换效率最高. 对聚3-甲基噻吩修饰的纳米结构TiO2和摩尔比为3∶1, 于530 ℃煅烧的复合纳米粒子构成的纳米结构电极进行光电性能研究, 结果表明, 聚3-甲基噻吩与半导体纳米粒子之间存在p-n结, 在一定条件下p-n结的存在有利于光生电子/空穴的分离, 从而提高了光电转化效率.  相似文献   

10.
A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.  相似文献   

11.
An extremely easy method is presented for producing surfactant-free films of nanocrystalline TiO2 at room temperature with excellent mechanical stability when deposited on glass or plastic electrodes for dye-sensitized solar energy conversion. Prolonged magnetic stirring of commercial TiO2 nanoparticles (Degussa P25) in either ethanol or water results in highly homogeneous dispersions which are used to prepare TiO2 films with surface properties which depend on the solvent used for dispersing the particles, even after sintering. The optical and mechanical properties of films cast from ethanol and water dispersions are compared, and differences in the extent of surface defects and dye binding are observed. Optical absorption, photoluminescence, and resonance Raman spectra of TiO2 films sensitized with Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 ("N3") reveal that the electronic coupling of the dye and semiconductor depends on the surface structure of the film which varies with film preparation. Current-voltage data for illuminated and dark dye-sensitized solar cells are obtained as a function of film preparation, and results are compared to spectroscopic data in order to interpret the microscopic basis for variations in solar cell performance, especially with regard to sintered versus unsintered TiO2 films. The results suggest that surface traps associated with oxygen vacancies play a critical role in determining the efficiency of dye-sensitized solar energy conversion through their influence on the binding and electronic coupling of the dye to the semiconductor.  相似文献   

12.
A series of novel metal-free organic dyes TC301-TC310 with relatively high HOMO levels were synthesized and applied in dye-sensitized solar cells (DSCs) based on electrolytes that contain Br(-)/Br(3)(-) and I(-)/I(3)(-). The effects of additive Li(+) ions and the HOMO levels of the dyes have an important influence on properties of the dyes and performance of DSCs. The addition of Li(+) ions in electrolytes can broaden the absorption spectra of the dyes on TiO(2) films and shift both the LUMO levels of the dyes and the conduction band of TiO(2), thus leading to the increase of J(sc) and the decrease of V(oc). Upon using Br(-)/Br(3)(-) instead of I(-)/I(3)(-), a large increase of V(oc) is attributed to the enlarged energy difference between the redox potentials of electrolyte and the Fermi level of TiO(2), as well as the suppressed electron recombination. Incident photon to current efficiency (IPCE) action spectra, electrochemical impedance spectra, and nanosecond laser transient absorption reveal that both the electron collection yields and the dye regeneration yields (Φ(r)) depend on the potential difference (the driving forces) between the oxidized dyes and the Br(-)/Br(3)(-) redox couple. For the dyes for which the HOMO levels are more positive than the redox potential of Br(-)/Br(3)(-) sufficient driving forces lead to the longer effective electron-diffusion lengths and almost the same efficient dye regenerations, whereas for the dyes for which the HOMO levels are similar to the redox potential of Br(-)/Br(3)(-), insufficient driving forces lead to shorter effective electron-diffusion lengths and inefficient dye regenerations.  相似文献   

13.
采用水热法制备了TiO2和CdSe两种纳米棒材料,将两种纳米材料制备成TiO2/CdSe复合纳米棒膜电极,并在复合膜上电化学聚合生成聚3-甲基噻吩poly(3-methylthiophene)(PMeT),研究了其光电化学性能.实验表明,当TiO2与CdSe的物质的量复合比为2:1,PMeT的聚合时间为40s,在电极电势为-0.2V下ITO/TiO2/CdSe/PMeT电极光电转换效率(IPCE)达到56%,对比ITO/TiO2/CdSe复合膜电极在长波方向的光电转换效率明显提高,光吸收截止波长发生了明显的红移.同时以ITO/TiO2/CdSe/PMeT组装了简易的杂化太阳电池,初步研究了光电池性能,光电池总效率为0.08%,Voc=0.4V,jsc=0.61mA/cm2,ff=0.33.  相似文献   

14.
Starburst triarylamine based dyes for efficient dye-sensitized solar cells   总被引:3,自引:0,他引:3  
We report here on the synthesis and photophysical/electrochemical properties of a series of novel starburst triarylamine-based organic dyes (S1, S2, S3, and S4) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). For the four designed dyes, the starburst triarylamine group and the cyanoacetic acid take the role of electron donor and electron acceptor, respectively. It was found that the introduction of starburst triarylamine group to form the D-D-pi-A configuration brought about superior performance over the simple D-pi-A configuration, in terms of bathochromically extended absorption spectra, enhanced molar extinction coefficients and better thermo-stability. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the donor moiety, which was confirmed by electrochemical measurements and theoretical calculations. The DSSCs based on the dye S4 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (J(sc)) of 13.8 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.63 V, and a fill factor (ff) of 0.69, corresponding to an overall conversion efficiency of 6.02% under 100 mW cm(-2) irradiation. This work suggests that the dyes based on starburst triphenylamine donor are promising candidates for improvement of the performance of the DSSCs.  相似文献   

15.
将 Cd S纳米粒子复合在 Ti O2 纳米多孔膜上 ,用染料 Ru( bpy) 2 ( NCS) 2 对此复合半导体纳米膜电极进行敏化 ,测量了不同 Cd S复合量的 ITO/Ti O2 /Cd S/Ru( bpy) 2 ( NCS) 2 光阳极组成光电池的能量转换效率 .实验证明 ,ITO/Ti O2 /Cd S/Ru( bpy) 2 ( NCS) 2 作为太阳电池光阳极的能量转换效率与 Ti O2 /Cd S复合半导体中 Cd S的含量有关 .当 Cd S复合时间为 5 min的电池的短路电流为 5 .2 3A/m2 ,开路电压为 0 .71 6 V,能量转换效率为 0 .77% .  相似文献   

16.
A zinc phthalocyanine with tyrosine substituents (ZnPcTyr), modified for efficient far-red/near-IR performance in dye-sensitized nanostructured TiO(2) solar cells, and its reference, glycine-substituted zinc phthalocyanine (ZnPcGly), were synthesized and characterized. The compounds were studied spectroscopically, electrochemically, and photoelectrochemically. Incorporating tyrosine groups into phthalocyanine makes the dye ethanol-soluble and reduces surface aggregation as a result of steric effects. The performance of a solar cell based on ZnPcTyr is much better than that based on ZnPcGly. Addition of 3alpha,7alpha-dihydroxy-5beta-cholic acid (cheno) and 4-tert-butylpyridine (TBP) to the dye solution when preparing a dye-sensitized TiO(2) electrode diminishes significantly the surface aggregation and, therefore, improves the performance of solar cells based on these phthalocyanines. The highest monochromatic incident photo-to-current conversion efficiency (IPCE) of approximately 24% at 690 nm and an overall conversion efficiency (eta) of 0.54% were achieved for a cell based on a ZnPcTyr-sensitized TiO(2) electrode. Addition of TBP in the electrolyte decreases the IPCE and eta considerably, although it increases the open-circuit photovoltage. Time-resolved transient absorption measurements of interfacial electron-transfer kinetics in a ZnPcTyr-sensitized nanostructured TiO(2) thin film show that electron injection from the excited state of the dye into the conduction band of TiO(2) is completed in approximately 500 fs and that more than half of the injected electrons recombines with the oxidized dye molecules in approximately 300 ps. In addition to surface aggregation, the very fast electron recombination is most likely responsible for the low performance of the solar cell based on ZnPcTyr.  相似文献   

17.
Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency 相似文献   

18.
采用原位化学法在纳米结构TiO2电极上制备了量子点PbS(Q-PbS), 并用电化学方法在TiO2/Q-PbS表面聚合3-甲基噻吩[poly(3-Methylthiophene), PMeT]. 研究结果表明, PMeT和Q-PbS单独修饰纳米结构TiO2电极和PMeT修饰Q-PbS连接纳米结构TiO2电极的光电流产生的起始波长都向长波方向移动; 在可见光区光电转换效率均比纳米结构TiO2的光电转换效率提高显著; PMeT与Q-PbS修饰的纳米结构TiO2之间存在p-n异质结. 在一定条件下p-n异质结的存在有利于光生电子/空穴的分离, 提高了光电转换效率.  相似文献   

19.
A Zn chlorophyll-a derivative, Zn chlorin-e6 (ZnChl-e6), adsorbed onto a nanocrystalline TiO2 film (ZnChl-e6/TiO2) electrode was prepared, and the photovoltaic properties of the ZnChl-e6/TiO2 electrode were studied. The absorption peaks of ZnChl-e6/TiO2 observed at 420, 654, and 795 nm were attributed to the ZnChl-e6 molecules aggregating onto TiO2 film. The fluorescence attributed to the ZnChl-e6 monomer and aggregate was observed at 710 and 820 nm, respectively, and the fluorescence in both cases was quenched by TiO2 particles. The maximum of the incident photon-to-current conversion efficiency (IPCE) value in the photocurrent action spectrum was 800 nm, and the IPCE value was 7.0%. ZnChl-e6 molecules formed aggregates on a nanocrystalline TiO2 film electrode. From the photocurrent-photovoltage characteristics of the ZnChl-e6/TiO2 electrode irradiated with 100 mW cm(-2), the short-circuit photocurrent (I(SC)) was found to be 0.19 mA cm(-2) and the open-circuit photovoltage (V(OC)) was found to be 375 mV. The maximum power was estimated to be 28.7 microW cm(-2), and the fill factor (FF) was estimated to be 40.1%. A near-IR light induced photovoltaic conversion system using a ZnChl-e6 aggregate formed onto a nanocrystalline TiO2 film electrode was achieved.  相似文献   

20.
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=1/3 and calcined at 300°C shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200°C and 85% NO conversion at 250°C with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250°C). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnOx on the surface and the abundance of Mn3+ and Ti3+ species. The addition of Ce into MnOx/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号