首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Single-phase zinc aluminate (ZnAl2O4) nanoparticles with the spinel structure was successfully obtained by the sol–gel method. The nanoparticles are crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminum ions changes with heat treatment temperature, as observed by FT-IR and also by 27Al solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. The photoluminescence spectra show that the emission of pristine ZnAl2O4 may change depending on the calcining temperature due to the quantum size effect.  相似文献   

2.
非均匀成核法表面包覆氧化铝的尖晶石LiMn2O4研究   总被引:13,自引:0,他引:13  
采用高温固相法合成尖晶石LiMn2O4,以非均匀成核方式对其进行包覆氧化铝的表面处理.通过XRD、SEM、粒度分析等技术对表面处理前后的LiMn2O4进行表征,分析了表面处理前后LiMn2O4物理特性的变化,并结合电化学性能测试,研究了表面处理工艺对LiMn2O4电化学容量与循环性能的影响.未经表面处理的LiMn2O4在1 C倍率下初期放电容量为86.5 mA•h•g-1,50次循环充放电后容量衰减26.3%.表面包覆0.5%、1%(w)氧化铝的LiMn2O4在1 C倍率下的初期放电容量分别为96.0、80.1 mA•h•g-1,经过50次循环后,容量分别降低7.0%、5.6%.实验结果表明,表面处理后的LiMn2O4循环性能显著提高,而且随着氧化物含量的增加,循环性能增强,但放电容量降低.  相似文献   

3.
IntroductionCatal}-tiedch}-drogcnationoflightalkancshasgreatindustrialimportancebecauseitrcprcscntsanalternativeforobtainingalkcncsforpci}.mcriZationandotherorganics}'nthcscsfromlot"costsaturatedh}'drocarbonfeedstocks.SomeprocessessuchasCATOFIN.OLEFLEX.Ph…  相似文献   

4.
Jiang  Feng  Feng  Guo  Xu  Chujia  Qing  Shao  Wu  Qian  Yu  Yun  Zhang  Quan  Jiang  Weihui 《Journal of Sol-Gel Science and Technology》2021,100(3):555-561
Journal of Sol-Gel Science and Technology - In this paper, fine, homogeneous, and high purity MgAl2O4 nanopowder was synthesized by a novel facile non-hydrolytic sol-gel (NHSG) route. The spinel...  相似文献   

5.
17O magic angle spinning (MAS) NMR has been used to determine the nature of oxygen exchange in ZrW(2)O(8). A highly effective isotopic labelling technique has been developed and 1D NMR and 2D exchange spectroscopy (EXSY) experiments have revealed that mutual exchange occurs between all oxygen sites, even at temperatures considerably below the alpha to beta order-disorder phase transition.  相似文献   

6.
Mesoporous MgAl2O4 spinel monolith was synthesized by the nanocasting pathway; high activity in CO oxidation was observed over gold catalysts based on such monoliths as support.  相似文献   

7.
A new form of LiMn2O4 is reported. The structure is the CaFe2O4-type and 6% denser than the spinel. The structure transformation was achieved by heating at 6 GPa. Analysis of the neutron diffraction pattern confirmed an average of the structure; the unit cell was orthorhombic at a = 8.8336(5) angstroms, b = 2.83387(18) angstroms, and c = 10.6535(7) angstroms (Pnma). Electron diffraction patterns indicated an order of superstructure 3a x b x c, which might be initiated by Li vacancies. The exact composition is estimated at Li(0.92)Mn2O4 from the structure analysis and quantity of intercalated Li. The polycrystalline CaFe2O4-type compound showed semiconducting-like characters over the studied range above 5 K. The activation energy was reduced to approximately 0.27 eV from approximately 0.40 eV at the spinel form, suggesting a possible enhancement of hopping mobility. Magnetic and specific-heat data indicated a magnetically glassy transition at approximately 10 K. As the CaFe2O4-type transition was observed for the mineral MgAl2O4, hence the new form of the lithium manganese oxide would provide valuable opportunities to study not only the magnetism of strongly correlated electrons but also the thermodynamics of the phase transition in the mantle.  相似文献   

8.
2-D 31P dipolar recoupling magic angle spinning NMR has been used to determine the true symmetry of the low temperature structure of ZrP2O7 for the first time.  相似文献   

9.
A novel polynuclear single-source precursor was prepared and characterized by single-crystal X-ray diffraction and multinuclear NMR spectroscopy. Nano-crystalline MgAl(2)O(4) spinel was synthesized via sol-gel processing of [MgAl(2)(μ(3)-O)(μ(2)-O(i)Pr)(4)(O(i)Pr)(2)](4). XRD, TGA-DSC and HRTEM confirmed the formation of a spinel phase at 475 °C, a temperature lower than any known processing temperature for MgAl(2)O(4).  相似文献   

10.
运用电化学阻抗谱(EIS)研究了尖晶石LiMn2O4正极在1mol·L-1LiPF6-EC(碳酸乙烯酯)∶DEC(碳酸二乙酯)∶DMC(碳酸二甲酯),1mol·L-1LiPF6-EC∶DEC∶EMC(碳酸甲乙酯)和1mol·L-1LiPF6-EC∶DMC三种不同电解液中,-20-20℃范围内的阻抗谱特征随温度的变化.研究结果表明,温度强烈影响尖晶石LiMn2O4正极的阻抗谱特征,而电解液组成对尖晶石LiMn2O4正极阻抗谱特征的影响较小,但电解液组成对锂离子在尖晶石LiMn2O4正极中嵌入脱出过程相关动力学参数影响较大.测得尖晶石LiMn2O4正极在上述三种电解液中,锂离子迁移通过固体电解质相界面(SEI)膜的离子跳跃能垒平均值分别为7.60、16.40和18.40kJ·mol-1;电子电导率的热激活化能平均值分别为44.77、35.47和68.06kJ·mol-1;嵌入反应活化能平均值分别为52.19、46.19和69.86kJ·mol-1.  相似文献   

11.
In context to the ion induced surface nanostructuring of metals and their burrowing in the substrates, we report the influence of Xe and Kr ion‐irradiation on Pt:Si and Ag:Si thin films of ~5‐nm thickness. For the irradiation of thin films, several ion energies (275 and 350 keV of Kr; 450 and 700 keV of Xe) were chosen to maintain a constant ratio of the nuclear energy loss to the electronic energy loss (Sn/Se) in Pt and Ag films (five in present studies). The ion‐fluence was varied from 1.0 × 1015 to 1.0 × 1017 ions/cm2. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM and SEM images show ion beam induced systematic surface nano‐structuring of thin films. The surface nano‐structures evolve with the ion fluence. The RBS spectra show fluence dependent burrowing of Pt and Ag in Si upon the irradiation of both ion beams. At highest fluence, the depth of metal burrowing in Si for all irradiation conditions remains almost constant confirming the synergistic effect of energy losses by the ion beams. The RBS analysis also shows quite large sputtering of thin films bombarded with ion beams. The sputtering yield varied from 54% to 62% by irradiating the thin films with Xe and Kr ions of chosen energies at highest ion fluence. In the paper, we present the experimental results and discuss the ion induced surface nano‐structuring of Pt and Ag and their burrowing in Si. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We have investigated by (27)Al nuclear magnetic resonance spectroscopy some compositions in the Ln(2)O(3)-Al(2)O(3)-SiO2 (Ln = Y or La) ternary phase diagram containing more than 60 mol % of SiO2. One- and two-dimensional high-field (17.6 T) high-speed (30 kHz) magic angle spinning experiments have been performed along with simulations of the spectra to quantify the amount of penta-coordinated aluminum present in those glasses as a function of composition. Very high-temperature experiments have allowed to follow selected samples from 2200 degrees C down to 1700 degrees C and hence to characterize the aluminum coordination state and dynamics in those liquids. The present study re-enforces the current view that "minor" species such as penta-coordinated aluminum are actually present in a considerable amount in aluminosilicate glasses, and high-temperature liquids at and above the charge compensation join. The high-field strength of Y3+ and La3+ reveal, for the first time in glasses, a different mean electric field gradient perceived by the tetra- and penta-coordinated aluminum environments. The movements responsible for the NMR relaxation of aluminum in the high-temperature liquid are shown to be uncorrelated with the movements responsible for the macroscopic shear viscosity. Results obtained both on glasses and in situ at high-temperature suggest a preferential localization of Ln3+ nearby tetra-coordinated aluminum species, with possible formation of tricluster and/or Ln3+ coordination changes.  相似文献   

13.
A room temperature (17)O NMR study of La(2)Mo(2)O(9), a fast oxide ionic conductor exhibiting a phase transition at 580 degrees C between a low-temperature alpha-phase and a high-temperature beta-phase, is presented. Four partly overlapping quasi-continuous distributions of oxygen sites are evidenced from 1D magic angle spinning (MAS) and 2D triple quantum MAS NMR experiments. They can be correlated with the three oxygen sites O1, O2 and O3 of the high-temperature crystal structure. The low-temperature phase is characterized by two distributed sites of type O1, which proves that the symmetry is lower than in the cubic high-temperature phase. Two-dimensional experiments show that there is no dynamic exchange process, on the NMR time-scale, between the different oxygen sites at room temperature, which agrees well with conductivity results.  相似文献   

14.
Molybdenum (0.5 at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100 MeV O7+ ions with different fluences of 5×1011, 1×1012 and 1×1013 ions/cm2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×1013 ions/cm2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from ~122 to 48 cm2/V s with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×1011 ions/cm2 showed relatively low resistivity of 6.7×10?4 Ω cm with the mobility of 75 cm2/V s. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×1011 ions/cm2.  相似文献   

15.
Geometric and electronic environments of vanadium have been addressed by (51)V magic angle spinning NMR spectroscopy of six-coordinated polyoxometalate solids. (C(4)H(9))(4)N(+) and mixed Na(+)/Cs(+) salts of the Lindqvist-type mono- and divanadium-substituted oxotungstates, [VW(5)O(19)](3-) and [V(2)W(4)O(19)](4-), have been prepared as microcrystalline and crystalline solids. The solid-state NMR spectra reflect the details of the local environment of the vanadium site in these hexametalate solids via the anisotropic quadrupolar and chemical shielding interactions. Remarkably, these (51)V fine structure constants in the solid state are dictated by the nature and geometry of the countercations. Electrostatic calculations of the electric field gradients at the vanadium atoms have been performed. Experimental trends are well reproduced with the simple electrostatic model, and explain the sensitivity of the anisotropic NMR parameters to the changes in the cationic environment at the vanadium site.  相似文献   

16.
The present study explored photoinduced radical processes caused by interaction of CH(4) and NH(3) with a photoexcited surface of a complex metal oxide: magnesium-aluminum spinel (MgAl(2)O(4); MAS). UV irradiation of MAS in vacuo yielded V-type color centers as evidenced by the 360 nm band in difference diffuse reflectance spectra. Interaction of these H-bearing molecules with photogenerated surface-active hole states (O(S)(-)?) yielded radical species which on recombination produced more complex molecules (including heteroatomic species) relative to the initial molecules. For the MAS/CH(4) system, photoinduced dissociative adsorption of CH(4) on surface-active hole centers produced ?CH(3) radicals that recombined to yield CH(3)CH(3). For MAS/NH(3), a similar dissociative adsorption process led to formation of ?NH(2) radicals with formation of NH(2)NH(2) as an intermediate product; continued UV irradiation ultimately yielded N(2). For the mixed MAS/CH(4)/NH(3) system, however, interaction of adsorbed NH(3) and CH(4) on the UV-activated surface of MAS yielded ?NH(2) and ?CH(3) radicals, respectively, which produced CH(3)-NH(2) followed by loss of the remaining hydrogens to form a surface-adsorbed cyanide, CN(S), species. Recombination of photochemically produced radicals released sufficient energy to re-excite the solid spinel, generating new surface-active sites and a flash luminescence (emission decay time at 520 nm, τ ~ 6 s for the MAS/NH(3) case) referred to as the PhICL effect.  相似文献   

17.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   

18.
19.
A series of Li1-zNi1+zO2 materials have been synthesised by the coprecipitation route. An X-ray diffraction study was carried out on these materials using the Rietveld method to determine the departure from the ideal stoichiometry z, which ranges from 0 to 0.138. The actual Li/Ni ratio was also checked by chemical analyses using inductively coupled plasma (ICP) for each sample. The stoichiometric sample (z approximately 0) was obtained using a 15% Li excess. (6/7)Li NMR results from LiNiO2 (z approximately 0) show that the asymmetric shape of the NMR signal is due to anisotropy. Calculations give evidence that the paramagnetic dipolar interaction from the electron spins carried by Ni is anisotropic but does not completely explain the experimental anisotropy. (6)Li MAS NMR (magic angle spinning NMR) experiments and temperature standardisation NMR measurements unambiguously assign the isotropic position at +726 ppm. The static-echo NMR spectra of the non-stoichiometric Li1-zNi1+zO2 phases also exhibit an asymmetric shape whose width increases with the departure from the ideal stoichiometry z. (6/7)Li static and MAS NMR show that the 2zNi(2+) ions thus formed modify the dipolar interaction within the materials and also affect the Fermi contact interaction, since a distribution of Li environments is observed using (6)Li NMR for non-stoichiometric samples.  相似文献   

20.
A stoichiometric MgAl 2O 4 spinel (MAS) powder was synthesized by heat treating at 1400 degrees C for 2 h a compacted mixture of alpha-Al 2O 3 and calcined caustic MgO, followed by crushing and milling. The surface of this powder was then passivated against hydrolysis with H 3PO 4 and Al(H 2PO 4) 3 in an ethanol solution. The as-passivated powder could then be dispersed in water using tetramethylammonium hydroxide (TMAH) and an ammonium salt of poly(acrylic acid) (Duramax D-3005) as dispersing agents and gelcast to form green consolidates with relatively high strength (>15 MPa). The good dispersing behavior of the passivated powder in water was confirmed by the low viscosity of its suspension containing 41-45 vol % solids, demonstrating the viability of replacing organic solvents by water in colloidal processing of MAS-based ceramics. The Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDAX) studies revealed that only negligible amounts of phosphate ions at the surface are required to effectively protect the powder from reacting with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号