首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this paper we present error estimates for the finite element approximation of linear elastic equations in an unbounded domain. The finite element approximation is formulated on a bounded computational domain using a nonlocal approximate artificial boundary condition or a local one. In fact there are a family of nonlocal approximate boundary conditions with increasing accuracy (and computational cost) and a family of local ones for a given artificial boundary. Our error estimates show how the errors of the finite element approximations depend on the mesh size, the terms used in the approximate artificial boundary condition, and the location of the artificial boundary. A numerical example for Navier equations outside a circle in the plane is presented. Numerical results demonstrate the performance of our error estimates.

  相似文献   


2.
1.IntroductionManyproblemsarisinginfluidmechanicsaregiveninanunboundeddomain,suchasfluidflowaroundobstacles.Whencomputingthenumericalsolutionsoftheseproblems,oneoftenintroducesartificialboundariesandsetsupaxtificialboundaryconditionsonthem.Thentheoriginal…  相似文献   

3.
In this paper we design high-order (non)local artificial boundaryconditions (ABCs) which are different from those proposed byHan, H. & Bao, W. (1997 Numer. Math., 77, 347–363)for incompressible materials, and present error bounds for thefinite-element approximation of the exterior Stokes equationsin two dimensions. The finite-element approximation (especiallyits corresponding stiff matrix) becomes much simpler (sparser)when it is formulated in a bounded computational domain usingthe new (non)local approximate ABCs. Our error bounds indicatehow the errors of the finite-element approximations depend onthe mesh size, terms used in the approximate ABCs and the locationof the artificial boundary. Numerical examples of the exteriorStokes equations outside a circle in the plane are presented.Numerical results demonstrate the performance of our error bounds.  相似文献   

4.
A sensitive issue in numerical calculations for exterior flow problems, e.g.around airfoils, is the treatment of the far field boundary conditions on a computational domain which is bounded. In this paper we investigate this problem for two-dimensional transonic potential flows with subsonic far field flow around airfoil profiles. We take the artificial far field boundary in the subsonic flow region. In the far field we approximate the subsonic potential flow by the Prandtl-Glauert linearization. The latter leads via the Green representation theorem to a boundary integral equation on the far field boundary. This defines a nonlocal boundary condition for the interior ring domain. Our approach leads naturally to a coupled finite element/boundary element method for numerical calculations. It is compared with local boundary conditions. The error analysis for the method is given and we prove convergence provided the solution to the analytic transonic flow problem around the profile exists.

  相似文献   


5.
A finite element method for the solution of Oseen equation in exterior domain is proposed. In this method, a circular artificial boundary is introduced to make the computational domain finite. Then, the exact relation between the normal stress and the prescribed velocity field on the artificial boundary can be obtained analytically. This relation can serve as an boundary condition for the boundary value problem defined on the finite domain bounded by the artificial boundary. Numerical experiment is presented to demonstrate the performance of the method.  相似文献   

6.
Summary. In this paper we consider the numerical simulations of the incompressible materials on an unbounded domain in . A series of artificial boundary conditions at a circular artificial boundary for solving incompressible materials on an unbounded domain is given. Then the original problem is reduced to a problem on a bounded domain, which be solved numerically by a mixed finite element method. The numerical example shows that our artificial boundary conditions are very effective. ReceivedJune 7, 1995 / Revised version received August 19, 1996  相似文献   

7.
Numerical solution of hyperbolic partial differential equation with an integral condition continues to be a major research area with widespread applications in modern physics and technology. Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In place of the classical specification of boundary data, we impose a nonlocal boundary condition. Partial differential equations with nonlocal boundary specifications have received much attention in last 20 years. However, most of the articles were directed to the second‐order parabolic equation, particularly to heat conduction equation. We will deal here with new type of nonlocal boundary value problem that is the solution of hyperbolic partial differential equations with nonlocal boundary specifications. These nonlocal conditions arise mainly when the data on the boundary can not be measured directly. Several finite difference methods have been proposed for the numerical solution of this one‐dimensional nonclassic boundary value problem. These computational techniques are compared using the largest error terms in the resulting modified equivalent partial differential equation. Numerical results supporting theoretical expectations are given. Restrictions on using higher order computational techniques for the studied problem are discussed. Suitable references on various physical applications and the theoretical aspects of solutions are introduced at the end of this article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

8.
The exterior boundary value problems of Laplace equation and linear elastic equations are considered. A series of approximate infinite boundary conditions are given. Then the original problem is reduced to a boundary value problem on a bounded domain. The finite element approximation of this problem and its error estimate are obtained. Finally, a numerical example shows that this method is very effective.  相似文献   

9.
In this paper,the numerical solutions of heat equation on 3-D unbounded spatial do-main are considered. n artificial boundary Γ is introduced to finite the computationaldomain.On the artificial boundary Γ,the exact boundary condition and a series of approx-imating boundary conditions are derived,which are called artificial boundary conditions.By the exact or approximating boundary condition on the artificial boundary,the originalproblem is reduced to an initial-boundary value problem on the bounded computationaldomain,which is equivalent or approximating to the original problem.The finite differencemethod and finite element method are used to solve the reduced problems on the finitecomputational domain.The numerical results demonstrate that the method given in thispaper is effective and feasible.  相似文献   

10.
1.IntroductionManyboundaxyvaJueproblemsofpartialdiffereotialequationsinvo1vingunboundeddomainoccurinmanyareasofapplications,e-g.lfluidflowaroundobstacles,couplingofstructureswithfoundationandsoon.Forgettingthenumericalsolutionsoftheproblemsonunboundeddomian,anaturalapproachistocutoffanunboundedpartofthedomainbyintroducinganartificialboundaryandsetupanaPpropriatear-tificialboundaryconditiononthearti%ialboundaryThentheoriginalproblemisapproximatedbyaproblemonbou.d.dfdomain.Inthelastteny6aJrs,b…  相似文献   

11.
Summary We present an a posteriori error estimator for the non-conforming Crouzeix-Raviart discretization of the Stokes equations which is based on the local evaluation of residuals with respect to the strong form of the differential equation. The error estimator yields global upper and local lower bounds for the error of the finite element solution. It can easily be generalized to the stationary, incompressible Navier-Stokes equations and to other non-conforming finite element methods. Numerical examples show the efficiency of the proposed error estimator.  相似文献   

12.
We consider a stationary incompressible Navier–Stokes flow in a 3D exterior domain, with nonzero velocity at infinity. In order to approximate this flow, we use the stabilized P1–P1 finite element method proposed by Rebollo (Numer Math 79:283–319, 1998). Following an approach by Guirguis and Gunzburger (Model Math Anal Numer 21:445–464, 1987), we apply this method to the Navier–Stokes system with Oseen term in a truncated exterior domain, under a pointwise boundary condition on the artificial boundary. This leads to a discrete problem whose solution approximates the exterior flow, as is shown by error estimates.  相似文献   

13.
In this paper, we apply the boundary integral method to the linearized rotating Navier-Stokes equations in exterior domain. Introducing some open ball which decomposes the exterior domain into a finite domain and an infinite domain, we obtain a coupled problem by the linearized rotating Navier-Stokes equations in finite domain and a boundary integral equation without using the artificial boundary condition. For the coupled problem, we show the existence and uniqueness of solution. Finally, we study the finite element approximation for the coupled problem and obtain the error estimate between the solution of the coupled problem and its approximation solution.  相似文献   

14.
In this work, a contact problem between a linear elastic material and a deformable obstacle is numerically analyzed. The contact is modeled using the well-known normal compliance contact condition. The weak formulation leads to a nonlinear variational equation which is approximated by using the finite element method. A priori error estimates are recalled. Then, we define an a posteriori error estimator of residual type to evaluate the accuracy of the finite element approximation of the problem. Upper and lower bounds of the discretization error are proved for this estimator.  相似文献   

15.
This work concerns the numerical finite element computation, in the frequency domain, of the diffracted wave produced by a defect (crack, inclusion, perturbation of the boundaries, etc.) located in a 3D infinite elastic waveguide. The objective is to use modal representations to build transparent conditions on some artificial boundaries of the computational domain. This cannot be achieved in a classical way, due to non-standard properties of elastic modes. However, a biorthogonality relation allows us to build an operator, relating hybrid displacement/stress vectors. An original mixed formulation is then derived and implemented, whose unknowns are the displacement field in the bounded domain and the normal component of the normal stresses on the artificial boundaries. Numerical validations are presented in the 2D case.  相似文献   

16.
The exact boundary condition on a spherical artificial boundary is derived for thethree-dimensional exterior problem of linear elasticity in this paper. After this bound-ary condition is imposed on the artificial boundary, a reduced problem only defined in abounded domain is obtained. A series of approximate problems with increasing accuracycan be derived if one truncates the series term in the variational formulation, which isequivalent to the reduced problem. An error estimate is presented to show how the errordepends on the finite element discretization and the accuracy of the approximate problem.In the end, a numerical example is given to demonstrate the performance of the proposedmethod.  相似文献   

17.
A priori bounds are established for the solution to the problem of Stokes flow in a bounded domain, for a viscous, heat conducting, incompressible fluid, when changes in the spatial geometry are admitted. These bounds demonstrate how the velocity field and the temperature field depend on changes in the spatial geometry and also yield a convergence theorem in terms of boundary perturbations. The results have a direct bearing on an error analysis for a numerical approximation to non-isothermal Stokes flow when the boundary of a complicated domain is approximated by a simpler one, e.g., in the procedure of triangulation combined with finite elements.  相似文献   

18.
We study nonlocal equations from the area of peridynamics, an instance of nonlocal wave equation, and nonlocal diffusion on bounded domains whose governing equations contain a convolution operator based on integrals. We generalize the notion of convolution to accommodate local boundary conditions. On a bounded domain, the classical operator with local boundary conditions has a purely discrete spectrum, and hence, provides a Hilbert basis. We define an abstract convolution operator using this Hilbert basis, thereby automatically satisfying local boundary conditions. The main goal in this paper is twofold: apply the concept of abstract convolution operator to nonlocal problems and carry out a numerical study of the resulting operators. We study the corresponding initial value problems with prominent boundary conditions such as periodic, antiperiodic, Neumann, and Dirichlet. To connect to the standard convolution, we give an integral representation of the abstract convolution operator. For discretization, we use a weak formulation based on a Galerkin projection and use piecewise polynomials on each element which allows discontinuities of the approximate solution at the element borders. We study convergence order of solutions with respect to polynomial order and observe optimal convergence. We depict the solutions for each boundary condition.  相似文献   

19.
Effects of periodic and Neumann boundary conditions on a nonlocal prey–predator model are investigated. Two types of kernel functions with finite supports are used to characterize the nonlocal interactions. These kernel functions are modified to handle the Neumann boundary condition. Numerical techniques to find the Turing and spatial-Hopf thresholds for Neumann boundary condition are also described. For a fixed range of nonlocal interaction with a given kernel function, Turing bifurcation curves corresponding to both the boundary conditions are close to each other. The same is true for the spatial-Hopf bifurcation curves too. However, the nonlinear solutions inside the Turing domain as well as spatial-Hopf domain depend on the boundary condition. Thus, boundary conditions play important roles in a nonlocal model of prey-predator interaction.  相似文献   

20.
Based on fully overlapping domain decomposition and a recent variational multiscale method, a parallel finite element variational multiscale method for convection dominated incompressible flows is proposed and analyzed. In this method, each processor computes a local finite element solution in its own subdomain using a global mesh that is locally refined around its own subdomain, where a stabilization term based on two local Gauss integrations is adopted to stabilize the numerical form of the Navier–Stokes equations. Using the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 856–875, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号