首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemiluminescence flow sensor for folic acid with immobilized reagents.   总被引:1,自引:0,他引:1  
A novel chemiluminescence (CL) sensor for folic acid combined flow-injection (FI) technology was presented in this paper. The analytical reagents involved in the CL reaction, including luminol and hexacyanoferrate(III), were both immobilized on an anion-exchange column in FI system. The CL signal produced by the reaction between luminol and hexacyanoferrate(III), which were eluted from the column through sodium phosphate injection, was decreased in the presence of folic acid. The CL emission was correlated with the folic acid concentration in the range from 0.01 to 15 microg ml(-1), and the detection limit was 3.5 ng ml(-1) folic acid (3sigma). At a flow rate of 2.0 ml min(-1), including sampling and washing, could be performed in 2 min with a relative standard deviation of < 2.5%. The flow sensor could be reused more than 300 times and has been applied to the analysis of folic acid in pharmaceutical preparations. and the recovery was from 97.4% to 100.4%.  相似文献   

2.
Song Z  Lü J  Zhao T 《Talanta》2001,53(6):2510-1177
A novel chemiluminescence (CL) sensor for isoniazid combined with flow-injection technology is presented in this paper. The analytical reagents, luminol and ferricyanide, were both immobilized on an anion-exchange column. The CL signal produced by the reaction between luminol and ferricyanide, which were eluted from the column through sodium phosphate injection, was decreased in the presence of isoniazid. The decreased CL intensity was linear with isoniazid concentration in the range 0.001–1.0 μg·ml−1; and the detection limit was 0.35 ng·ml−1 (3s). The whole process, including sampling and washing, could be completed in 2 min with a relative standard deviation of less than 4.1%. The sensor could be reused more than 400 times and has been applied for the determination of isoniazid in pharmaceutical preparations.  相似文献   

3.
Hexacyanoferrate(III) was used as a mediator in the determination of total iron, as iron(II)-1,10-phenanthroline, at a screen-printed carbon sensor device. Pre-reduction of iron(III) at −0.2 V versus Ag/AgCl (1 M KCl) in the presence of hexacyanoferrate(II) and 1,10-phenanthroline (pH 3.5-4.5), to iron(II)-1,10-phenanthroline, was complete at the unmodified carbon electrode surface. Total iron was then determined voltammetrically by oxidation of the iron(II)-1,10-phenanthroline at +0.82 V, with a detection limit of 10 μg l−1.In potable waters, iron is present in hydrolysed form, and it was found necessary to change the pH to 2.5-2.7 in order to reduce the iron(III) within 30 s. A voltammetric response was not found at lower pH values owing to the non-formation of the iron(II)-1,10-phenanthroline complex below pH 2.5.Attempts to incorporate all the relevant reagents (1,10-phenanthroline, potassium hexacyanoferrate(III), potassium hydrogen sulphate, sodium acetate, and potassium chloride) into a modifying coated PVA film were partially successful. The coated electrode behaved very satisfactorily with freshly-prepared iron(II) and iron(III) solutions but with hydrolysed iron, the iron(III) signal was only 85% that of iron(II).  相似文献   

4.
A new shipboard analytical method for determining picomolar levels of manganese in seawater has been developed. The method is based on a combination of chelating resin column extraction and improved chemiluminescence (CL) detection in a closed flow system. In this method, manganese in sample solution is selectively collected on newly-developed iminodiacetate-immobilized chelating resin, and then eluted with acidic solution containing hydrogen peroxide. The resulting eluent is mixed with luminol solution and aqueous ammonia after removal of iron ions by a chelating resin column, and then the mixture is introduced into the CL cell. The manganese concentration is obtained from the CL intensity. The detection limit (3SD) of manganese is 5 pmol L–1 from 9 mL of seawater sample. The method was applied to seawater samples collected at the Okinawa Trough.  相似文献   

5.
Summary A new, sensitive chelating ion-exchanger colorimetric method has been developed for the determination of iron at the g/l level in water, based on the direct measurement of light absorption of iron hydroxamate resin complex. In 0.2 N perchloric acid solution, iron could be rapidly, selectively and quantitatively absorbed on the hydroxamate resin. The calibration curve for iron(III) of a 25 ml solution was linear in the concentration range 8.00×10–6 to 5.00×10–5 M. For iron(III) with larger sample volumes, the relative detection limit was increased. Most of the metals interfered negligibly, such as Ca(II), Co(II), Cu(II), Ni(II) and Zn(II), except for higher concentration of lead(II) and mercury(II) when present at up to 400 times the concentration of iron(III). The effects of EDTA, glycine, thiourea, phosphate, nitrate and chloride on the retention of iron(III) were also examined. Only thiourea significantly influenced the retention of iron(III). The presence of sodium chloride even at a concentration of 3.5×104 times that of iron(III) did not interfere at all.
Bestimmung von Mikromengen Eisen durch Hydroxamatharz-Colorimetrie
  相似文献   

6.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples. Received: 13 March 1997 / Revised: 3 June 1997 / Accepted: 6 June 1997  相似文献   

7.
A sensitive and selective spectrophotometric method has been developed for the determination of iron as Fe(II) or Fe(III) using 9,10-phenanthrenequinone monoxime (PQM) as the complexing agent. Fe(II) and Fe(III) react with PQM to form coloured water insoluble complexes which can be adsorbed on microcrystalline naphthalene in the pH ranges 3.7–6.2 and 2.0–8.4, respectively. The solid mass consisting of the metal complex and naphthalene is dissolved in DMF and the metal determined spectrophotometrically by measuring the absorbances Fe(II) at 745 nm and Fe(III) at 425 nm. Beer's law is obeyed over the concentration range 0.5–20.0 g of iron(II) and 20–170.0 g of Fe(III) in 10 ml of DMF solution. The molar absorptivities are 1.333 × 104 1 · mole–1 · cm–1 for Fe(II) and 2.428 × 1031· mole–1 · cm–1 for Fe(III). The precision of determination is better than 1%. The interference of various ions has been studied and the method has been employed for the determination of iron in various standard reference alloys, bears, wines, ferrous gluconate, human hair and environmental samples.  相似文献   

8.
Indirect detection of paracetamol was accomplished using a capillary electrophoresis-chemiluminescence (CE-CL) detection system, which was based on its inhibitory effect on a luminol-potassium hexacyanoferrate(III) (K3[Fe(CN)6]) CL reaction. Paracetamol migrated in the separation capillary, where it mixed with luminol included in the running buffer. The separation capillary outlet was inserted into the reaction capillary to reach the detection window. A four-way plexiglass joint held the separation capillary and the reaction capillary in place. K3[Fe(CN)6] solution was siphoned into a tee and flowed down to the detection window. CL was observed at the tip of the separation capillary outlet. The CL reaction of K3[Fe(CN)6] oxidized luminol was employed to provide the high and constant background. Since paracetamol inhibits the CL reaction, an inverted paracetamol peak can be detected, and the degree of CL suppression is proportional to the paracetamol concentration. Maximum CL signal was observed with an electrophoretic buffer of 30 mM sodium borate (pH 9.4) containing 0.5 mM luminol and an oxidizer solution of 0.8 mM K3[Fe(CN)6] in 100 mM NaOH solution. Under the optimal conditions, a linear range from 6.6 × 10−10 to 6.6 × 10−8 M (r = 0.9999), and a detection limit of 5.6 × 10−10 M (signal-to-noise ratio = 3) for paracetamol were achieved. The relative standard deviation (R.S.D.) of the peak area for 5.0 × 10−9 M of paracetamol (n = 11) was 2.9%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

9.

A rapid and sensitive chemiluminescence flow sensor for the determination of formaldehyde was proposed in this article. The analytical reagents involved in chemiluminescence (CL) reaction, luminol and KIO4, were both immobilized on an anion-exchange column. The CL signal produced by the reaction between luminol and KIO4, which were eluted from the column through water injection, was decreased in the presence of formaldehyde. Formaldehyde was sensed by measuring the decrement of CL intensity, which was observed linear over the logarithm of formaldehyde concentration range of 5.0-1000.0 ng mL?1, and the limit of detection is 1.8 ng mL?1 (3σ). At a flow rate of 2.0 mL min?1, including sampling and washing, could be performed in 0.5 min with a relative standard deviation of less than 3.0%. The flow sensor offered reagentless procedures and remarkable stability in determination of formaldehyde, and could be easily re-used over 80 h. The proposed flow microsensor was applied successfully in the determination of formaldehyde in artificial water samples and air.  相似文献   

10.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples.  相似文献   

11.
A flow-through CL method for the determination of lead combined with controlled-reagent-release technology has been developed. Chemiluminescence (CL) reagents luminol and potassium permanganate were immobilized on anion exchange resin by electrostatic interaction. Lead ion was determined by its enhancing effect on the CL reaction between luminol and potassium permanganate. Both luminol and potassium permanganate were eluted from the anion exchange resin column by sodium phosphate solution. The linear range of the system was 10 μg mL?1, and the detection limit was 5?×?10–9 g mL?1 lead (3σ). A complete analysis could be performed in 1 min with a relative SD 3.2% (1.0?×?10–7 g mL?1, n?=?9). The column shows remarkable stability and can be reused over 350 times and 21 days. The method has been applied to determine lead in human blood samples.  相似文献   

12.
《Analytical letters》2012,45(9):1823-1836
Abstract

A novel chemiluminescence (CL) animal tissue‐based sensor for pyruvic acid is presented in this paper. Pork heart tissue was chopped into small pieces and packed into a mini‐glass column as the recognition element. When pyruvic acid passed through the column, hydrogen peroxide was produced under the catalytic oxidation of oxygen by pyruvic acid oxidase present in the pork heart tissue. This produced hydrogen peroxide could react with luminol in alkaline solution to produce chemiluminescence in the presence of potassium hexacyanoferrate(III). The developed sensor system promises simplicity, fastness, stability, and sensitivity. Under the optimum conditions, CL intensities are proportional to the concentration of pyruvic acid in the range of 0.02–12 µmol/L, with a detection limit of 0.004 µmol/L (3σ). RSD is 2.3% for 0.5 µmol/L pyruvic acid (n=11). The sensor could be stable for 150 min by more than 100 times determination. The proposed method has been applied successfully to the analysis of pyruvic acid in biological samples. The results obtained by the proposed method are consistent with those obtained by spectrophotometry.  相似文献   

13.
A novel chemiluminescence (CL) flow-through sensor for the determination of pyrogallol has been developed. The method is based on the reaction between pyrogallol and potassium hexacyanoferrate(III) in sodium hydroxide solution. Potassium hexacyanoferrate(III) involved in the CL reaction was electrostatically immobilized on anion-exchange resin packed in a column. Pyrogallol was sensed by the CL reaction between pyrogallol and potassium hexacyanoferrate(III) which was eluted from the ion-exchange column through sodium phosphate injection. The CL emission allows quantitation of pyrogallol concentration in the range 0.01-3.8 microg/mL with a detection limit (3 sigma) of 0.003 microg/mL and a sample throughput of 118 h(-1). The relative standard deviation (n=7) was 2.2% for 0.2 microg/mL of pyrogallol. The influence of foreign compounds was tested.  相似文献   

14.
An extract of crystal violet-tetrachloroferrate(III) in nitrobenzene was used to prepare a tetrachloroferrate(III)-selective liquid membrane electrode with a poly(vinyl chloride) support. The optimal conditions to determine 2.5 × 10–5 – 5.0 × 10–2 M iron(III) as tetrachloroferrate(III) (anionic slope 56 mV/decade, detection limit 7.9 × 10–6 M) were found to be 4.0–5.5.M total chloride in 0.75–1.5M hydrochloric acid. The electrode was reliably applied to determine iron in human blood, haematite and mineralized vitamin syrup by direct potentiometry, standard and sample additions as well as standard subtraction techniques.  相似文献   

15.
张四纯  周国俊  鞠熀先 《中国化学》2002,20(10):1049-1054
IntroductionGallicacidexistsintheleavesandfruitsofmanytypesofplantsandiswidelyusedinmedicineforanti oxi dationandantibacterialactivity ,antiflammatoryactionandanti canceractivity .1 5Inspiteofthehealthimportanceofgallicacid ,itsmetabolismandkineticsinthehu…  相似文献   

16.
Summary Both hexacyanoferrate(III) and hexacyanoferrate(II) catalyze the oxidation of p-phenylenediamines by iron(III)aq. The rate of this reaction in the presence of a sample with an unknown amount of hexacyanoferrate is compared with the reaction rate of solutions containing well defined concentrations of this substance. In this way, hexacyanoferrate can be determined photometrically down to <10–9 mol/l. Although this procedure is very sensitive, the analysis can be performed with a simple photometer. Absorbance changes >0.2 can easily be obtained in 1 cm cuvettes, even at extremely small concentrations of hexacyanoferrate, because it is not an absorbance proportional to the concentration of hexacyanoferrate but rather the formation rate of p-semiquinonediimine which enables the quantitative determination of hexacyanoferrate.  相似文献   

17.
A novel integrated chemiluminescence (CL) flow sensor for the determination of adrenaline and isoprenaline is developed based on the enhancing effect of analytes on CL emission of luminol oxidized by periodate in alkaline solution. The analytical reagents luminol and periodate are immobilized on anion exchange resins, respectively, and packed in a glass tube to construct a reagentless sensor. The proposed sensor allows the determination of adrenaline and isoprenaline over the range from 2.0×10−8 to 1.0×10−5 g ml−1 and 2.0×10−7 to 5.0×10−5 g ml−1, respectively. The detection limits are 7.0×10−9 g ml−1 for adrenaline and 5.0×10−8 g ml−1 for isoprenaline with a relative standard deviation of 1.7% for the 1.0×10−7 g ml−1 adrenaline (n=11) and 2.1% for 1.0×10−6 g ml−1 isoprenaline (n=11). The sample throughput was 60 samples h−1. The sensor has been successfully applied to the determination of adrenaline and isoprenaline in pharmaceutical preparations.  相似文献   

18.
A highly sensitive chemiluminescence(CL) flow sensor is proposed for the determination of ascorbic acid. The analytical reagents luminol and iron(II) are immobilized on anion-exchange and cation-exchange resins, respectively, and can be eluted by sodium sulphate. The calibration graphs are linear in the range 1 × 10–9 to 1 × 10–6 g mL–1 and the detection limit is 4.0 × 10–10 g mL–1. The sensor has been applied successfully to the determination of ascorbic acid in vegetables.  相似文献   

19.
A novel amperometric nitrite sensor was developed based on the immobilization of hemoglobin/colloidal gold nanoparticles on a glassy carbon electrode by a titania sol-gel film. The sensor shows a pair of well-defined and nearly reversible cyclic voltammogram peaks for Hb Fe(III)/Fe(II) with a formal potential (E°) of –0.370 V, and the peak-to-peak separation at 100 mV s–1 was 66 mV vs. Ag/AgCl (3.0 M KCl) in a pH 6.9 phosphate buffer solution. The formal potential of the Hb Fe(III)/Fe(II) couple shifted linearly with pH with a slope of –50.0 mV/pH, indicating that electron transfer accompanies single-proton transportation. The sensor exhibited an excellent electrocatalytic response to the reduction of nitrite. The reduction overpotential was 0.45 V below that obtained at a colloidal gold nanoparticles/TiO2 sol-gel film-modified GCE. The linear range for nitrite determination for the sensor was 4.0×10–6 to 3.5×10–4 M, with a detection limit of 1.2×10–6 M. The stability, repeatability and selectivity of the sensor were also evaluated.  相似文献   

20.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号