首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
4.
Peptide foldamers constitute a growing class of nanomaterials with potential applications in a wide variety of chemical, medical and technological fields. Here we describe the preparation and structural characteristics of a new class of cyclic peptide foldamers (3alpha,gamma-CPs) that, depending on their backbone N-methylation patterns and the medium, can either remain as flat rings that dimerize through arrays of hydrogen bonds of antiparallel beta-sheet type, or can fold into twisted double reverse turns that, in the case of double gamma-turns, associate in nonpolar solvents to form helical supramolecular structures. A 3alpha,gamma-CP consists of a number of multiples of a repeat unit made up of four amino acid residues of alternating chirality: three corresponding to alpha-amino acids and one to a gamma-amino acid (a cis-3-aminocycloalkanecarboxylic acid).  相似文献   

5.
6.
7.
This account describes novel artificial double helices recently developed by our group. We have designed and synthesized the double helices consisting of two complementary, m-terphenyl-based strands that are intertwined through chiral amidinium-carboxylate salt bridges. Due to the chiral substituents on the amidine groups, the double helices adopted an excess one-handed helical conformation in solution as well as in the solid state. By extending the modular strategy, we have synthesized double helices bearing Pt(II) linkers, which underwent the double helix-to-double helix transformations through the chemical reactions of the Pt(II) complex moieties. In addition, artificial double-stranded metallosupramolecular helical polymers were constructed by combining the salt bridges and metal coordination. In contrast to the design-oriented double helices based on salt bridges, we have serendipitously developed a spiroborate-based double helicate bearing oligophenol strands. The optical resolution of the helicate was successfully attained by a diastereomeric salt formation. We have also unexpectedly found that oligoresorcinols consisting of a very simple repeating unit self-assemble into double helices with the aid of aromatic interactions in water. Furthermore, a bias in the twist sense of the double helices can be achieved by incorporating chiral substituents at both ends of the strands.  相似文献   

8.
The construction and molecular recognition of various three-dimensional biomimetic structures is based on the predictable de novo design of artificial molecules. In this regard beta-peptides are especially interesting, since stable secondary structures are obtained already with short sequences; one of them is the 14-helix in which every third residue has the same orientation. The covalent functionalization of every third 14-helix side chain with nucleobases was used for a reversible organization of two helices based on nucleobase pairing. A series of beta-peptides with various nucleobase sequences was synthesized and the stability of double strand formation was investigated. As few as four nucleobases are sufficient for considerable duplex stability. The stability of base pairing was examined by temperature-dependent UV spectroscopy and the formation of the 14-helix was confirmed by circular dichroism (CD) spectroscopy. The preferred strand orientation of complementary-nucleobase-modified beta-peptide helices was investigated as well as the influence of helix content on the duplex stability. The preorganization of a 14-helix in regard to double-strand recognition was tuned by the sequential order of polar beta-amino acids or by the amount of 2-aminocyclohexanecarboxylic acid units incorporated, which are known to facilitate 14-helix formation, respectively.  相似文献   

9.
The pinene-bipyridine carboxylic derivatives (+)- and (-)-HL, designed to form configurationally stable lanthanide complexes, proved their effectiveness as chiral building blocks for the synthesis of lanthanide-containing superstructures. Indeed a self-assembly process takes place with complete diastereoselectivity between the enantiomerically pure ligand L(-) and Ln(III) ions (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er), thus leading to the quantitative formation of a trinuclear supramolecular architecture with the general formula [Ln(3)(L)(6)(mu(3)-OH)(H(2)O)(3)](ClO(4))(2) (abbreviated as tris(Ln[L](2))). This class of C(3)-symmetrical compounds was structurally characterized in the solid state and solution. Electrospray (ES) mass spectrometric and (1)H NMR spectroscopic analyses indicated that the trinuclear species are maintained in solution (CH(2)Cl(2)) and are stable in the investigated concentration range (10(-2)-10(-6) m). The photophysical properties of the ligand HL and its tris(Ln[L](2)) complexes were studied at room temperature and 77 K, thus demonstrating that the metal-centered luminescence is well sensitized both for the visible and near-IR emitters. The chiroptical properties of tris(Ln[L](2)) complexes were investigated by means of circular dichroism (CD) and circularly polarized luminescence (CPL). A high CD activity is displayed in the region of pi-pi* transitions of bipyridine. CPL spectra of tris(Eu[(+)-L](2)) and tris(Tb[(+)-L](2)) present large dissymmetry factors g(em) for the sensitive transitions of Eu(III) ((5)D(0)-->(7)F(1), g(em)=-0.088) and Tb(III) ((5)D(4)-->(7)F(5), g(em)=-0.0806). The self-recognition capabilities of the system were tested in the presence of artificial enantiomeric mixtures of the ligand. (1)H NMR spectra identical to those of the enantiomerically pure complexes and investigations by CD spectroscopic analysis reveal an almost complete chiral self-recognition in the self-assembly process, thus leading to mixtures of homochiral trinuclear structures.  相似文献   

10.
CO2 gas was used to construct novel types of supramolecular polymers. Self-assembling nanostructures 11 and 13 were prepared, which employ both hydrogen bonding and dynamic, thermally reversible carbamate bonds. As precursors, calixarene ureas 1 and 2 were synthesized, which strongly aggregate/dimerize (K(D)>/=10(6) M(-1) per capsule) in apolar solution with the formation of self-assembling capsules 7 and linear polymeric chains 8, respectively, and also possess "CO2-philic" primary amino groups on the periphery. CO2 effectively reacts with molecules 7 and 8 in apolar solvents and cross-links them with the formation of multiple carbamate salt bridges. Oligomeric aggregate 11 and three-dimensional polymeric network 13 were prepared and characterized by 1H and 13C NMR spectroscopy. The morphology of supramolecular gel 13 was studied by scanning electron microscopy. Addition of a competitive solvent destroyed the hydrogen bonding in assembling structures 11 and 13, but did not influence the carbamate linkers; carbamate salts 12 and 14, respectively, were obtained. On the other hand, thermal release of CO2 from 11 and 13 was easily accomplished (1 h, 100 degrees C) while retaining the hydrogen-bonding capsules. Thus, three-dimensional polymeric network 13 was transformed back to linear polymeric chain 8 without breaking up. Encapsulation and storage of solvent molecules by 11 and 13 was demonstrated. This opens the way for switchable materials, which reversibly trap, store, and then release guest molecules. A two-parameter switch and control over hydrogen bonding and CO2-amine adducts was established.  相似文献   

11.
The self‐assembly of triangular‐shaped oligo(phenylene ethynylenes) (OPEs), peripherally decorated with chiral and linear paraffinic chains, is investigated in bulk, onto surfaces and in solution. Whilst the X‐ray diffraction data for the chiral studied systems display a broad reflection centered at 2θ ~20° (λ=Cu), the higher crystallinity of OPE 3 , endowed with three linear decyl chains, results in a diffractrogram with a number of well‐resolved reflections that can be accurately indexed as a columnar packing arranged in 2D oblique cells. Compounds (S)‐ 1 a and (R)‐ 1 b —endowed with (S) and (R)‐3,7‐dimethyloctyloxy chains—transfer their chirality to the supramolecular structures formed upon their self‐assembly, and give rise to helical nanostructures of opposite handedness. A helicity switch is noticeable for the case of chiral (S)‐ 2 decorated with (S)‐2‐methylnonyloxy chains which forms right‐handed helices despite it possesses the same stereoconfiguration for their stereogenic carbons as (S)‐ 1 a that self‐assembles into left‐handed helices. The stability and the mechanism of the supramolecular polymerization in solution have been investigated by UV/Vis experiments in methylcyclohexane. These studies demonstrate that the larger the distance between the stereogenic carbon and the aromatic framework is, the more stable the aggregate is. Additionally, the self‐assembly mechanism is conditioned by the peripheral substituents: whereas compounds (S)‐ 1 a and (R)‐ 1 b self‐assemble in a cooperative manner with a low degree of cooperativity, the aggregation of (S)‐ 2 and 3 is well described by an isodesmic model. Therefore, the interaction between the chiral coil chains conditions the handedness of the helical pitch, the stability of the supramolecular structure and the supramolecular polymerization mechanism of the studied OPEs.  相似文献   

12.
Double helicates are known to exhibit self-recognition characteristics determined by the coordination geometry of the metal involved as well as by the topicity of the ligands. Combining tridentate (terpyridine, T) or bidentate (bipyridine, B) subunits in a tritopic strand affords a set of ligands able to assemble by pairs to form double helicates, homo- or heterostranded, homo- or heterotopic, depending on the coordination properties of the metals involved. The four ligand strands, BBB, TTT, BBT, and TBT form constitutionally dynamic sets of double helicates with the metal ions Cu(I), Cu(II), and Zn(II); these helicates correspond to the correct coding of the BB, BT, and TT pairs for tetra-, penta-, and hexacoordinate Cu(I), Cu(II), and Zn(II) cations, respectively.  相似文献   

13.
14.
There is growing interest in the design of synthetic molecules that are able to self‐assemble into a polymeric chain with compact helical conformations, which is analogous to the folded state of natural proteins. Herein, we highlight supramolecular approach to the formation of helical architectures and their conformational changes driven by external stimuli. Helical organization in synthetic self‐assembling systems can be achieved by the various types of noncovalent interactions, which include hydrogen bonding, solvophobic effects, and metal‐ligand interactions. Since the external environment can have a large influence on the strength and configuration of noncovalent interactions between the individual components, stimulus‐induced alterations in the intramolecular noncovalent interactions can result in dynamic conformational change of the supramolecular helical structure thus, driving significant changes in the properties of the materials. Therefore, these supramolecular helices hold great promise as stimuli‐responsive materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1925–1935, 2008  相似文献   

15.
16.
17.
18.
A new type of supramolecular polymer was prepared by ionic self-assembly (ISA) from two oppositely charged dyes; a perylenediimide and a copper-phthalocyanine derivative. Coulomb coupling stabilizes the whole structure, and a combination of charge-transfer interactions and discotic stacking facilitates the exclusive formation of one-dimensional polymeric chains. The supramolecular dye-polymers have a large association constant (2.4 x 10(7) L mol(-1)), high molecular weight, and high mechanical stability. The use of cryo-transmission electron microscopy (cryo-TEM) confirmed the existence of extended fibers of width 2.4 nm. Further image analysis revealed slight undulation and faint segmentation of the fibers, and density maxima were observed at a regular interval of 3.6 nm along the fiber axis. The fiber-like structure (and aggregate of fibers) is also found in the solid state, as shown by the results of mineralization contrasting experiments, atomic force microscopy (AFM), and X-ray analyses. A structural model is proposed, in which the structural subunits, arranged in a side-by-side conformation, form a stacked structure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号