首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

3.
A sensitive and reproducible method for the determination of morphine and the metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) was developed. The method was validated for perfusion fluid used in microdialysis as well as for sheep and human plasma. A C18 guard column was used to desalt the samples before analytical separation on a ZIC HILIC (hydrophilic interaction chromatography) column and detection with tandem mass spectrometry (MS/MS). The mobile phases were 0.05% trifluoroacetic acid (TFA) for desalting and acetonitrile/5 mM ammonium acetate (70:30) for separation. Microdialysis samples (5 microL) were directly injected onto the system. The lower limits of quantification (LLOQ) for morphine, M3G and M6G were 0.50, 0.22 and 0.55 ng/mL, respectively, and the method was linear from LLOQ to 200 ng/mL. For plasma, a volume of 100 microL was precipitated with acetonitrile containing internal standards (deuterated morphine and metabolites). The supernatant was evaporated and reconstituted in 0.05% TFA before the desalting process. The LLOQs for sheep plasma were 2.0 and 3.1 ng/mL and the ranges were 2.0-2000 and 3.1-3100 ng/mL for morphine and M3G, respectively. For human plasma, the LLOQs were 0.78, 1.49 and 0.53 ng/mL and the ranges were 0.78-500, 1.49-1000 and 0.53-500 ng/mL for morphine, M3G and M6G, respectively.  相似文献   

4.
A sensitive and specific liquid chromatography/mass spectrometry (LC/MS) method has been developed and validated for the quantification of the modified gamma-cyclodextrin Org 25969 and Rocuronium bromide (Roc or Org 9426) in the plasma and urine of guinea pigs. The assay was linear and reproducible over the range 25-10000 ng/mL for both compounds. The lowest limit of quantification (LLOQ) for both compounds in urine was 25 ng/mL. In plasma, the LLOQ was 25 ng/mL for Org 9426 and 50 ng/mL for Org 25969. The inter- and intra-day variation was lower than 20%. The physicochemical properties of both compounds imposed different modes of extraction from plasma. The modified gamma-cyclodextrin was extracted by trifluoroacetic acid (TFA) precipitation while Rocuronium was extracted by acetonitrile precipitation. Both compounds were quantified in urine by direct injection onto the column. The LC/MS analyses of Org 25969 and Org 9426 were performed using two different assay conditions. It was not possible to quantify the complex of cyclodextrin and Roc as it dissociated on the LC column. The use of LC/MS conferred great advantage to the quantification of both Org 25969 and Org 9426, as they were not chromogenic enough to afford the sensitivity and specificity required for the assay.  相似文献   

5.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated for simultaneous quantification of olanzapine, clozapine, ziprasidone, haloperidol, risperidone, and its active metabolite 9-hydroxyrisperidone, in rat plasma using midazolam as internal standard (IS). The analytes were extracted from rat plasma using a single step liquid-liquid extraction technique. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/5 mM ammonium formate (pH 6.1 adjusted with formic acid) with gradient elution. All of the analytes were detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 0.1 ng/mL and correlation coefficient (R(2)) values for the linear range of 0.1-100 ng/mL were 0.997 or greater for all the analytes. The intra-day and inter-day precision and accuracy were better than 8.05%. The relative and absolute recovery was above 77% and matrix effects were low for all the analytes except for ziprasidone. This validated method has been successfully used to quantify the plasma concentration of the analytes after chronic treatment with antipsychotic drugs.  相似文献   

6.
In this study, a simple and reliable LC–MS/MS method was first proposed for the simultaneous determination of TUG-891 and its metabolites TUG-891-alcohol, TUG-891-aldehyde, and TUG-891-acid in rat plasma. The analytes and fasiglifam (internal standard) were extracted from plasma samples with acetonitrile and separated using an Acquity BEH C18 column (1.7 μm, 2.1 × 50 mm) with water containing 0.05% ammonium hydroxide and acetonitrile containing 0.05% ammonium hydroxide as the mobile phase. A Q-Exactive Orbitrap mass spectrometer in full-scan mode was used for mass detection, and the data analysis was obtained using a mass extraction window of 5 ppm. The calibration curves exhibited excellent linearity (correlation coefficient > 0.9981) in the concentration range of 0.5–1000 ng/mL. The lower limit of quantification was 0.5 ng/mL for all analytes. The intra- and inter-day precision was less than 11.31%, and the accuracy ranged from −11.50 to 9.50%. The extraction recovery of the analytes from rat plasma was greater than 82.31%, and no obvious matrix effect was found. The established method was further applied to the pharmacokinetic study of TUG-891, TUG-891-alcohol, TUG-891-aldehyde, and TUG-891-acid in rat after a single dose of 5-mg/kg treatment of TUG-891. The results demonstrated that TUG-891 was rapidly metabolized into its metabolites and the systemic exposures of the metabolites were much higher than those of TUG-891.  相似文献   

7.
The main objective of our current study is to develop and validate an accurate and direct ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to simultaneously detect plasma concentrations of tofacitinib and its metabolite M9, and to study the pharmacokinetic profiles of the two compounds in beagle dogs. After rapid precipitation of protein by adding acetonitrile, the chromatographic separation of tofacitinib was completed, as well as M9 and upadacitinib (internal standard, IS) by using an Acquity BEH C18 (1.7 μm, 2.1 mm × 50 mm) column. A Xevo TQ-S triple quadrupole tandem mass spectrometer was employed to determine their concentrations under the positive ion pattern. Selective reaction monitoring (SRM) was used with ion transitions at m/z 313.12 → 148.97 for tofacitinib, m/z 329.10 → 137.03 for M9, and m/z 380.95 → 255.97 for IS, respectively. This assay demonstrated excellent linearity, and the ranges of calibration curves for both tofacitinib and M9 were 0.5–400 ng/mL. The new UPLC-MS/MS assay can reach the values (0.5 ng/mL) of lower limit of quantification (LLOQ) for both tofacitinib and M9. Both intra-day and inter-day accuracy of all analytes ranged from ?12.0% to 14.3%, while the precision was ≤13.2%. The recovery rate of all analytes was >88.5%, and more importantly there was no conspicuous matrix effect. In addition, the stability was consistent with the quantificative requirements of plasma samples under all conditions. Finally, the assay on UPLC-MS/MS is able to be employed to determine the pharmacokinetic characteristics of tofacitinib and its metabolite M9 in the plasma of beagle dogs after taking orally a dose of tofacitinib at 2 mg/kg.  相似文献   

8.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for simultaneous quantification of docetaxel and ketoconazole in rat plasma with paclitaxel as internal standard (IS). The analytes were extracted from rat plasma by using a liquid-liquid extraction technique with ethyl acetate and the LC separation was performed on a Cosmosil-C(18) analytical column (150 mm x 2.0 mm i.d., Nacalai Tesque Inc., Japan). The extracted samples were analyzed with LC/MS/MS, operating in selected reaction monitoring (SRM) mode. The SRM transitions of precursor ions to product ions were 830.3-->549.1 (m/z) for docetaxel, 531.2-->489.3 (m/z) for ketoconazole, and 876.7-->307.9 (m/z) for the IS. The calibration curves were linear over the range of 2-500 ng/mL for docetaxel and 50-20 000 ng/mL for ketoconazole, with coefficients of correlation above 0.999. The limits of quantification for docetaxel and ketoconazole were both 2 ng/mL. The limit of detection for each analyte was 1 ng/mL. The intra- and inter-day precision (CV) of analysis were within 7%, and the accuracy ranged from 95 to 110%. The overall recoveries for docetaxel and ketoconazole were about 89.0% and 91.1%, respectively. The total analysis time was only 9.0 min. This quantitation method was successfully applied to the simultaneous determination of docetaxel and ketoconazole in rat plasma and some potential interaction was found in the current coadministration pharmacokinetic study. This established method was also utilized in the in vitro and in vivo drug-drug interaction study of docetaxel and ketoconazole (to be published).  相似文献   

9.
A novel, rapid and sensitive isocratic liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for quantification of docetaxel in human plasma with paclitaxel as internal standard. The high sensitivity and specificity of MS/MS detection enabled the use of a small volume of plasma (0.05 mL) and a simple liquid-liquid extraction procedure. Furthermore, a very short run-time (3 min) fulfilled the need for monitoring plasma levels of docetaxel from large-scale clinical studies. The calibration curve for docetaxel was linear over the range 5-1000 ng/mL with coefficients of correlation >0.999 using only 0.05 mL plasma. The intra- and inter-day precisions (CV) of analysis were <7%, and accuracy ranged from 96 to 110%. The applicability of the method was demonstrated in a pharmacokinetic study of a 1-h infusion of docetaxel with dosages of 75 mg/m(2). Possible conjugated metabolites of docetaxel were not detected in patients' samples.  相似文献   

10.
Two fast and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based bioanalytical assays were developed and validated to quantify the active and three inactive metabolites of prasugrel. Prasugrel is a novel thienopyridine prodrug that is metabolized to the pharmacologically active metabolite in addition to three inactive metabolites, which directly relate to the formation and elimination of the active metabolite. After extraction and separation, the analytes were detected and quantified using a triple quadrupole mass spectrometer using positive electrospray ionization. The validated concentration range for the inactive metabolites assay was from 1 to 500 ng/mL for each of the three analytes. Additionally, a 5x dilution factor was validated. The interday accuracy ranged from -10.5% to 12.5% and the precision ranged from 2.4% to 6.6% for all three analytes. All results showed accuracy and precision within +/-20% at the lower limit of quantification and +/-15% at other levels. The validated concentration range for the active metabolite assay was from 0.5 to 250 ng/mL. Additionally, a 10x dilution factor was validated. The interbatch accuracy ranged from -7.00% to 5.98%, while the precision ranged from 0.98% to 3.39%. Derivatization of the active metabolite in blood with 2-bromo-3'-methoxyacetophenone immediately after collection was essential to ensure the stability of the metabolite during sample processing and storage. These methods have been applied to determine the concentrations of the active and inactive metabolites of prasugrel in human plasma.  相似文献   

11.
A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of rimonabant in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M+H)+ ions, m/z 463-363 for rimonabant and m/z 408-235 for the internal standard. The assay exhibited a linear dynamic range of 0.1-100 ng/mL for rimonabant in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. With dilution integrity up to 10-fold, the upper limit of quantification was extendable up to 1000 ng/mL. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

12.
A sensitive and selective high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of amisulpride in 100 microL of human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M + H)(+) ions, m/z 370-242 for amisulpride and m/z 341-112 for the internal standard. The assay exhibited a linear dynamic range with a lower range of 0.1-100 ng/mL and a higher range of 1-500 ng/mL of amisulpride in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for both linearity ranges. A run time of 2.0 min for each sample made it possible to analyze more than 275 human plasma samples per day. The validated method has been successfully used to analyze plasma samples for application in pharmacokinetic studies.  相似文献   

13.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A method with parallel extraction columns and parallel analytical columns (PEC-PAC) for on-line high-flow liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for simultaneous quantification of a drug candidate and its six metabolites in dog plasma. Two on-line extraction columns were used in parallel for sample extraction and two analytical columns were used in parallel for separation and analysis. The plasma samples, after addition of an internal standard solution, were directly injected onto the PEC-PAC system for purification and analysis. This method allowed the use of one of the extraction columns for analyte purification while the other was being equilibrated. Similarly, one of the analytical columns was employed to separate the analytes while the other was undergoing equilibration. Therefore, the time needed for re-conditioning both extraction and analytical columns was not added to the total analysis time, which resulted in a shorter run time and higher throughput. Moreover, the on-line column extraction LC/MS/MS method made it possible to extract and analyze all seven analytes simultaneously with good precision and accuracy despite their chemical class diversity that included primary, secondary and tertiary amines, an alcohol, an aldehyde and a carboxylic acid. The method was validated with the standard curve ranging from 5.00 to 5000 ng/mL. The intra- and inter-day precision was no more than 8% CV and the assay accuracy was between 95 and 107%.  相似文献   

15.
Apicidin, a fungal metabolite isolated from Fusarium pallidoroseum, is a cyclic tetrapeptide that exhibits potent anti-protozoal and anti-angiogenic activities. Although extensive studies have been recently conducted to examine the biological and pharmacological action, no information is available on the quantitative analysis of apicidin. To our knowledge, this study is the first to describe a rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay method for the quantification of apicidin in rat serum. The method was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), accuracy, and precision. The multiple reaction monitoring was based on the transitions m/z 624.7 --> 84.3 and 372.1 --> 176.1 for apicidin and trazodone, respectively. The assay utilized a single liquid-liquid extraction and isocratic elution, and the LLOQ was 0.5 ng/mL using 0.1 mL of rat serum. The assay was linear over a range from 0.5-1000 ng/mL, with correlation coefficients >0.9994. The mean intra- and inter-day assay accuracy ranged from 99.9-101.5% and 94.8-102.1%, respectively, and the mean intra- and inter-day precision was between 2.7-5.9% and 1.6-11.5%, respectively. The developed assay method was applied to a pharmacokinetic study after intravenous injection of apicidin in rats at a dose of 1 mg/kg.  相似文献   

16.
The study of pharmacokinetics of Ginkgo biloba extracts in Traditional Chinese Medicine was relatively recent. In this study, a simple, quick and sensitive LC‐MS/MS analytical method was developed for the determination of ginkgolides A, B, C and bilobalide in rat plasma. The analytes were completely separated from the endogenous compounds on an Agilent Zorbax Eclipse plus C18 column (50 mm × 3.0 mm, 1.8 µm) using an isocratic elution. The single‐run analysis time was as short as 5.0 min. Sample preparation for protein removal was accomplished used a simple methanol precipitation method, after SPE showing a simultaneous extraction and cleanup of extracts allowing for a direct analysis. Extraction recoveries in rat plasma for ginkgolides A, B, C and bilobalide ranged from 75.6% to 89.0%. The calibration curves were determined over the ranges 0.5–20,000 ng/mL for ginkgolides A, B, C and bilobalide respectively. The lower limits of quantification (LLOQ) of the analytes were 0.5 ng/mL. Inter‐day and intra‐day precision and accuracy were below 15% and between 85 and 115%, respectively. Finally, the developed method was successfully applied to a pharmacokinetic study following oral administration of the Ginkgo biloba extracts to the male ICR rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, sensitive, selective and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of atorvastatin and its active metabolites ortho-hydroxyatorvastatin and para-hydroxyatorvastatin in human plasma using rosuvastatin as internal standard (IS). Following simple liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 559/440 for atorvastatin, m/z 575/466 for ortho-hydroxyatorvastatin, m/z 575/440 for para-hydroxyatorvastatin and m/z 482/258 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for atorvastatin and its two metabolites in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of atorvastatin, ortho-hydroxyatorvastatin, para-hydroxyatorvastatin and the IS from spiked plasma samples were 54.2 +/- 3.2, 50.1 +/- 3.8, 65.2 +/- 3.6 and 71.7 +/- 2.7%, respectively. A run time of 2.5 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

18.
A quantitative liquid chromatography/ion trap mass spectrometry method for the simultaneous determination of paclitaxel, 6alpha-hydroxypaclitaxel and p-3'-hydroxypaclitaxel in human plasma has been developed and validated. 6alpha-,p-3'-Dihydroxypaclitaxel was also quantified using paclitaxel as a reference and docetaxel as an internal standard. The substances were extracted from 0.500 mL plasma using solid-phase extraction. The elution was performed with acetonitrile and the samples were reconstituted in the mobile phase. Isocratic high-performance liquid chromatography analysis was performed by injecting 50 microL of reconstituted material onto a 100 x 3.00 mm C12 column with a methanol:1% trifluoroacetic acid/ammonium trifluoroacetate in H(2)O 70:30 mobile phase at 350 microL/min. The [M+H](+) ions generated in the sonic spray ionization interface were isolated and fragmented using two serial mass spectrometric methods: one for paclitaxel (transition 854 --> 569 & 551) and the dihydroxymetabolite (transition 886 --> 585 & 567) and one for the hydroxy metabolites (transition 870 --> 585 & 567; transition 870 --> 569 & 551) and docetaxel ([M+Na](+), transition 830 --> 550). Calibration curves were created ranging between 0.5 and 7500 ng/mL for paclitaxel, 0.5 and 750 ng/mL for 6alpha-hydroxypaclitaxel, and 0.5 and 400 ng/mL for p-3'-hydroxypaclitaxel. Adduct ion formation was noted and investigated during method development and controlled by mobile phase optimization. In conclusion, a sensitive method for simultaneous quantification of paclitaxel and its metabolites suitable for analysis in clinical studies was obtained.  相似文献   

19.
A rapid and sensitive LC/MS/MS assay was developed and validated for the determination of clopidogrel in human plasma. Clopidogrel was extracted by single liquid-liquid extraction with pentane, and chromatographic separations were achieved on a C(18) column. The method was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), stability, accuracy and precision. The multiple reaction monitoring was based on m/z transition of 322.2 --> 211.9 for clopidogrel and 264.1 --> 125.1 for ticlopidine (internal standard). The total analytical run time was relatively short (3 min), and the LLOQ was 10 pg/mL using 0.5 mL of human plasma. The assay was linear over a concentration range from 10 to 10,000 pg/mL (r > 0.999). The intra- and inter-day accuracies were 101.3-108.8 and 98.4-103.5%, respectively, and the intra- and inter-day assay precisions were 1.9-5.5 and 4.4-8.1%, respectively. The developed assay method was applied to a pharmacokinetic study in human volunteers after oral administration of clopidogrel at a dose of 150 mg.  相似文献   

20.
Zearalenone, a mycotoxin biosynthesized by various Fusarium fungi, is widely found as a contaminant in grains and animal feeds. This study describes a rapid and sensitive LC/MS/MS assay method for the quantification of zearalenone in rat serum. The assay was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), accuracy and precision. The multiple reaction monitoring was based on the transition of m/z 317.0 → 130.9 for zearalenone and 319.0 → 204.8 for zearalanone (internal standard). The assay utilized a single liquid–liquid extraction with t‐butyl methyl ether and isocratic elution, and the LLOQ was 0.5 ng/mL using 0.1 mL rat serum. The assay was linear over a concentration range from 0.5 to 200 ng/mL, with correlation coefficients >0.9996. The mean intra‐ and inter‐day assay accuracy was 101.2–112.9 and 96.3–108.0%, respectively. The mean intra‐ and inter‐day precision was between 1.3–7.6 and 3.6–10.6%, respectively. The developed assay was applied to a pharmacokinetic study after a bolus intravenous injection of zearalenone in rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号