首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Szepesy  V. Háda 《Chromatographia》2001,54(1-2):99-108
Summary Eight commercially available reversed-phase (RP) columns of widely different characteristics were evaluated and compared using the linear solvation energy relationships (LSER). Retention factors of 32 solutes of different types were determined under isocratic conditions using an acetonitrile-water (30∶70) mobile phase. Stationary phase properties were compared by the fitting coefficients of the LSER-based regression equations which are characteristic of the individual stationary phases and represent the extent of various molecular interactions contributing to the retention process. The good agreement between the calculated and measured logk values for different type of compounds support the adequacy and applicability of the LSER model to describe chromatographic retention. Characterization of column performance for the separation of various type of compounds was established by the determination of the different selectivity factors representing hydrophobic selectivity, polar selectivity and specific selectivity.  相似文献   

2.
3.
The purpose of the present work was to systematically study the chromatographic behaviour of different aromatic stationary phases in a subcritical fluid mobile phase. We attempted to assess the chemical origin of the differences in retention characteristics between the different columns. Various types of aromatic stationary phases, all commercially available, were investigated. The effect of the nature of the aromatic bonding on interactions between solute and stationary phases and between solute and carbon dioxide-methanol mobile phase was studied by the use of a linear solvation energy relationship (LSER): the solvation parameter model. This study was performed to provide a greater knowledge of the properties of these phases in subcritical fluid chromatography, and to allow a more rapid and efficient choice of aromatic stationary phase in regard of the chemical nature of the solutes to be separated. Charge transfer interactions naturally contribute to the retention on all these stationary phases but are completed by various other types of interactions, depending on the nature of the aromatic group. The solvation vectors were used to compare the different phase properties. In particular, the similarities in the chromatographic behaviour of porous graphitic carbon (PGC), polystyrene-divinylbenzene (PS-DVB) and aromatic-bonded silica stationary phases are evidenced.  相似文献   

4.
Linear solvation energy relationships (LSERs) were used to delineate which specific intermolecular interactions are responsible for changes in retention for a variety of well characterized analytes when acidic and basic additives were used in reversed phase HPLC. The effects of trifluoroacetic acid, triethylamine and a combination of trifluoroacetic acid and triethylamine on the LSERs were compared to those observed in the absence of additives. These effects were examined using four different mobile phase modifiers and five different stationary phases. Trifluoroacetic acid alone and in combination with triethylamine produced LSER regression coefficients nearly identical to those obtained with no additive present in the mobile phase. Triethylamine alone produced different LSER regression coefficients from the other systems unless the mobile phase contained trifluoroethanol as the mobile phase modifier, or the stationary phase consisted of a polymeric support.  相似文献   

5.
6.
A new HPLC stationary phase based on n-butylimidazolium bromide has been characterized by a linear solvation energy relationship (LSER) approach in the binary acetonitrile/water mobile phases. The retention properties of the stationary phase were systematically evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phase. The results and further comparisons with conventional reversed phase system confirm that retention properties are similar to phenyl phases in acetonitrile/water mixtures. The results obtained with acetonitrile/water mixtures are also compared with results obtained using methanol/water mixtures.  相似文献   

7.
8.
The effect of different modifiers in subcritical fluid chromatography (SubFC) on interactions between solute and porous graphitic carbon (PGC) and between solute and carbon dioxide-modifier mobile phases was studied by the use of linear solvation energy relationships (LSERs). This study was performed to allow efficient optimization of the composition of the carbon dioxide-modifier mobile phase in regard of the chemical nature of the solutes to be separated. With all modifiers tested (methanol, ethanol, n-propanol, isopropanol, acetonitrile, tetrahydrofuran and hexane), the solute/stationary phase interactions are greater than the solute/mobile phase ones. Dispersion interactions and charge transfer between electron donor solute and electron acceptor PGC mainly explain the retention on this surface, whatever the modifier. These interactions are quite constant over the range of modifier percentage studied (5-40%). For acidic compounds, the retention variation is mainly related to the change in the basic character of mobile and stationary phase due to the variation of modifier percentage. Changes in eluting strength are mostly related to adsorption of mobile phase onto the PGC with methanol and acetonitrile, and to the increase of dispersion interactions between the solute and the mobile phase for other modifiers. Relationships between varied selectivities and solvation parameter values have been studied and are discussed in this paper.  相似文献   

9.
10.
This review focuses on the use of linear solvation energy relationships (LSERs) to understand the types and relative strength of the chemical interactions that control retention and selectivity in the various modes of chromatography ranging from gas chromatography to reversed phase and micellar electrokinetic capillary chromatography. The most recent, widely accepted symbolic representation of the LSER model, as proposed by Abraham, is given by the equation: SP=c + eE + sS + aA + bB + vV, in which, SP can be any free energy related property. In chromatography, SP is most often taken as logk' where k' is the retention factor. The letters E, S, A, B, and V denote solute dependent input parameters that come from scales related to a solute's polarizability, dipolarity (with some contribution from polarizability), hydrogen bond donating ability, hydrogen bond accepting ability, and molecular size, respectively. The e-, s-, a-, b-, and v-coefficients and the constant, c, are determined via multiparameter linear least squares regression analysis of a data set comprised of solutes with known E, S, A, B, and V values and which span a reasonably wide range in interaction abilities. Thus, LSERs are designed to probe the type and relative importance of the interactions that govern solute retention. In this review, we include a synopsis of the various solvent and solute scales in common use in chromatography. More importantly, we emphasize the development and physico-chemical basis of - and thus meaning of - the solute parameters. After establishing the meaning of the parameters, we discuss their use in LSERs as applied to understanding the intermolecular interactions governing various gas-liquid and liquid-liquid phase equilibria. The gas-liquid partition process is modeled as the sum of an endoergic cavity formation/solvent reorganization process and exoergic solute-solvent attractive forces, whereas the partitioning of a solute between two solvents is thermodynamically equivalent to the difference in two gas/liquid solution processes. We end with a set of recommendations and advisories for conducting LSER studies, stressing the proper chemical and statistical application of the methodology. We intend that these recommendations serve as a guide for future studies involving the execution, statistical evaluation, and chemical interpretation of LSERs.  相似文献   

11.
This paper describes the results of selectivity optimization and internal standard prediction for the quantitation of estradiol and levonorgestrel in transdermal patches by reversed-phase liquid chromatography (RPLC) based on the linear solvation energy relationships (LSERs). The patch samples are prepared by swelling with acetonitrile (ACN) and the separation is performed by Zorbax Eclipse XDB ODS columns. A proper retention range is first determined with a binary mobile phase of ACN and water based on the general resolution equation. The interference to estradiol from a levonorgestrel impurity is then eliminated by a ternary mobile phase of acetonitrile-methanol-water with a composition predicted by LSERs. When the resolution is optimized and the "open window" in the chromatogram for an internal standard is selected, LSERs are used to predict the candidate compounds to be evaluated as the internal standard. The approach described in this study can be used, in general, to considerably improve the efficiency of RPLC method development, particularly for neutral samples. Finally, the LSER approach for the selectivity optimization is compared with a statistical response surface methodology (RSM) based on a central composite design (CCD) in terms of the effectiveness and number of experiments. It is concluded that, although the predicted mobile phase composition to achieve the desired selectivity is about the same, the LSER approach is more efficient and fewer experiments are required.  相似文献   

12.
This paper describes the results of an initial study on the application of linear solvation energy relationships (LSERs) to the prediction of internal standard compounds in reversed-phase liquid chromatographic (RPLC) method development. Six neutral samples are separated on an Inertsil ODS(3) column by either acetonitrile-water or methanol-water mobile phases under either isocratic or linear gradient conditions. After the separation conditions are optimized, the desired positions for internal standard candidates are selected based on the "open windows" of the chromatograms. The compounds with the desired retention range are then predicted based on LSERs from a database consisting of more than 700 compounds with defined physicochemical properties. The prediction requires the use of LSER coefficients under the separation conditions for each sample. They are determined a priori by performing multivariable linear regression on the retention of 20 reference solutes against their physicochemical properties. It can be concluded from the study that LSER is an excellent approach to the selection of internal standard compounds for RPLC under either isocratic or gradient elution. The average prediction error is usually within 10%, but no more than 20%. Finally, LSER approach is fast and systematic, and will save a significant amount of time and resources during RPLC method development.  相似文献   

13.
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk IL/water values by chromatographic methods is also discussed.  相似文献   

14.
With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two β-cyclodextrin (β-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked β-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked β-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.  相似文献   

15.
16.
17.
The linear solvation energy relationship (LSER) model was used to characterize interactions responsible for sorption of volatile organic compounds (VOCs) in air samples on six different solid-phase microextraction (SPME) fibers at 296K and zero relative humidity. The polydimethylsiloxane and polyacrylate fibers sorption data were also modeled at different relative humidities in the range of 10-90% and influence of water vapors on the extraction process is discussed. The LSER equations were obtained by a multiple regression of the distribution coefficients of 14 probe solutes on an appropriate SPME fiber against the solvation parameters of the solutes. The derived LSER equations successfully predicted the VOC distribution coefficients and the selectivity of individual SPME fibers for the various volatile solutes. The LSER approach coupled with SPME is a relatively simple and reliable tool to rapidly characterize the sorption mechanism of VOCs with various stationary phases and may potentially be applied to design and test new chromatographic materials for sampling or separation of VOCs.  相似文献   

18.
The linear solvation energy relationship equation developed by Abraham and coworkers was applied to the retention factors k of a series of 20 polar solutes on four chemically different RP-HPLC phases. Three of them were specially synthesized and are functionalized with ether, phenylsulfide or phenylsulfoxide groups. Their retention properties are compared with those of a nonpolar octadecylsiloxane (ODS) phase. The phase properties r, the excess molar refraction; s, the dipolarity; a and b, the hydrogen-bond basicity and acidity; and v, the cavity factor show significant differences on the four phases and are used here to suggest a classification of stationary phases based on the type of interactions that are important for the retention. The hydrophilic system properties r, s, a and b are the reason for different elution orders of a set of solutes on the four phases. The intrinsic hydrophobicity of the system, the v/A ratio (A is the surface coverage in μmol/m2), shows a dependence on the mobile phase composition as do the normalized phase properties r/v, s/v, a/v and b/v. Averaging the constants over a large span of mobile phase composition should be done very carefully. The LSER model is used to predict the elution order on the stationary phases for five phenols which show coelution on ODS. On the phenylsulfide phase they are resolved. Received: 3 December 1998 / Revised: 1 February 1999 / Accepted: 8 February 1999  相似文献   

19.
Varied types of alkylsiloxane-bonded and fluoroalkylsiloxane-bonded stationary phases, all commercially available, were investigated with subcritical fluid mobile phase. The effect of the alkyl chain length (from C4 to C18) and of the nature of the bonding (fluorodecylsiloxane, phenyl-C18 and polar-embedded-C18) on the chromatographic behaviour was investigated by the use of a linear solvation energy relationship (LSER), the solvation parameter model. A large set of test compounds provides precise and reliable information on the intermolecular interactions responsible for retention on these stationary phases used with a subcritical mobile phase. First of all, the results underline the close properties between subcritical fluid and organic liquid. The use of non aqueous mobile phases reduces the cavity energy and the mobile phase acidity generally encountered with aqueous liquid phases, allowing other interactions to take a part in retention. As expected, an increase in the alkyl chain length favours the dispersive interactions between the solutes and the stationary phases. Changes in basicity and acidity of the stationary phases are also related to the chain length, but, in this case, mobile phase adsorption onto the stationary phase is supposed to explain these behaviours. The addition of a phenyl group at the bottom of the C18 chain, near the silica, does not induce great modifications in the retentive properties. The fluorodecylsiloxane and the polar-embedded alkylsiloxane phases display very different properties, and can be complementary to the classical alkylsiloxane-bonded phases. In particular, the fluorinated phase does not favour the dispersive interactions, in comparison to hydrogenated stationary phases, when the basicity of the polar-embedded phase is obviously greater than the one of classical alkylsiloxane-bonded phases, due to the amide function. Finally, logk-logk curves plotted between the different phases illustrate the effect of the interaction properties on the retention of different classes of compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号