首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inception process of nucleation in explosive boiling systems is theoretically investigated. With the effect of pulse heating or sudden cooling, the temperature distribution near the surface during explosive boiling is calculated. The liquid near the wall can maintain a stable layer induced by strong attractive force, and there exists maximum supersaturation beyond this stable layer. As the surface temperature and temperature gradient are high enough, the critical distance of maximum supersaturation can be larger than the radius of critical bubble, and the homogeneous nucleation will dominate the inception boiling process. For explosive boiling induced by pulse heating, homogeneous nucleation forms after a short time; while homogeneous nucleation can dominate the initial explosive boiling induced by sudden cooling.  相似文献   

2.
This paper presents an experimental study of microscopic explosive boiling introduced by a pulsed laser. The violent explosive boiling was observed in the liquid film, and the vapor bubbles together with liquid droplets were expelled from the platinum film. It is found that the apparent bubble nucleation temperature is a strong function of the heating rate. The pressure signal appears as continuous oscillation and is intensified as laser power density increases.  相似文献   

3.
The process of rapid phase transition from highly superheated liquid to vapor is frequently so fast and violent that it is called explosive boiling. The paper uses the kinetic theory of evaporation to study growth of an internal vapor bubble produced by homogeneous nucleation within a highly superheated liquid droplet boiling explosively in a hot medium. Evaporation/condensation coefficient is estimated by comparing the predictions of the theory with available experimental data. We show that the value of the evaporation coefficient can be very low for high reduced temperatures (0.06 for butane at 378 K), in agreement with recent molecular dynamic simulations.  相似文献   

4.
A digital photographic study of pool boiling with R11 was performed on a horizontal transparent heater at pressure at 0.1 MPa. A high-speed digital camera was applied to record the bubble behaviors of boiling process. The departure diameter, departure time, and nucleation site density at different heat flux were obtained. From the video images, it can be concluded that evaporation of microlayer is very important to the growth of bubble. It was also observed that there is not any liquid replenished into the microlayer below the bubble. In addition, bubble growth curve and dry-out area growth curve could be determined by analyzing the images. Based on the experimental result, boiling curve for R11 was predicted by using the dynamic microlayer model. As a result, the agreement between the predictions and the experiment data is good at high heat flux.  相似文献   

5.
With the long-term objective of Critical Heat Flux (CHF) prediction, bubble dynamics in convective nucleate boiling flows has been studied using a Direct Numerical Simulation (DNS). A sharp-interface phase change model which was originally developed for pool boiling flows is extended to convective boiling flows. For physical scales smaller than the smallest flow scales (smaller than the grid size), a micro-scale model was used. After a grid dependency study and a parametric study for the contact angle, four cases of simulation were carried out with different wall superheat and degree of subcooling. The flow structures around the growing bubble were investigated together with the accompanying physics. The relation between the heat flux evolution and the bubble growth was studied, along with investigations of bubble diameter and bubble base diameter evolutions across the four cases. As a validation, the evolutions of bubble diameter and bubble base diameter were compared to experimental observations. The bubble departure period and the bubble shapes show good agreement between the experiment and the simulation, although the Reynolds number of the simulation cases is relatively low.  相似文献   

6.
A new model to calculate heat transfer coefficients in nucleate boiling is presented. Heat transfer and fluid flow around a single bubble are investigated taking into account the influence of meniscus curvature, adhesion forces and interfacial thermal resistance on the thermodynamic equilibrium at the gas-liquid interface. The model requires only bubble site densities and departure diameters. Further quantities except the thermophysical properties are not needed. From the results bubble growth rates can be derived. As an example nucleate boiling heat transfer coefficients of R-114 were calculated. They agree with experimental values within the experimental accuracy.  相似文献   

7.
采用高频电控热激发汽泡的方式构造微通道人工泡状流,可以有效抑制微通道沸腾流动的不稳定性和强化传热。本文基于Lattice Boltzmann大密度比多相流复合模型,数值研究了通道内人工泡状流的流动和传热,通过比较分析不同发泡频率的泡状流,量化分析了汽泡运动和增长对微通道流动与传热的相互影响。一方面着重分析了汽泡运动对微通道运动边界层以及汽泡相变增长对热边界层的影响,另一方面也研究了边界层对汽泡动力行为的影响,所得结论对研究抑制微通道沸腾流动不稳定性和强化传热有参考意义。  相似文献   

8.

The inception of the boiling, in a pool or flow boiling, is the formation of the vapor bubble at an active nucleation site that plays a crucial role in the boiling process and it becomes critical and unfolds many facets when channel size reduces to submicron. The detailed knowledge of the bubble dynamics is helpful in establishing the thermal and hydraulic flow behavior in the microchannel. In the current paper, bubble dynamics that include bubble nucleation at the nucleation site, its growth, departure, and motion along the flow in a microchannel(s) are discussed in detail. Different models developed for critical cavity radius favorable for bubble nucleation are compiled and observe that models exhibit large deviation. The bubble growth models are compiled and concluded that the development of a more generalize bubble growth model is necessary that would be capable of accounting for inertia controlled and thermal diffusion controlled regions. Bubbles at nucleation sites in a microchannel grow under the influence of various forces such as surface tension, inertia, shear, gravitational and evaporation momentum. Parametric analysis of these forces reckoned that the threshold between macro- to microchannel could be identify through critical analysis of such forces. Eventually, the possible impact of the various factors such as operating conditions, geometrical parameters, thermophysical properties of fluid on bubble dynamics in microchannel has been reported.

  相似文献   

9.
Remaining within the pure hydrodynamic approach, we formulate a self-consistent model for simulating the dynamic behavior of matter passing through metastable states in the two-phase liquid–vapor region of the phase diagram. The model is based on the local criterion of explosive boiling, derived by applying the theory of homogeneous bubble nucleation in superheated liquids. Practical application of the proposed model is illustrated with hydrodynamic simulations of a volumetrically uniformly heated planar layer of fused silica SiO2. Implications for experimentally measurable quantities are briefly discussed. A newly developed equation of state, based on the well known QEOS model and capable of handling homogeneous mixtures of elements, was used in the numerical simulations.  相似文献   

10.
The presence of surfactant additives in water was found to enhance the boiling heat transfer significantly. The objective of the present investigation is to compare the bubble growth in water to that of a surfactant solution with negligible environmental impact. The study was conducted at two values of heat fluxes to clarify the effect of the heat flux on the dynamics of bubble nucleation. The bubble growth under condition of pool boiling in water and non-ionic surfactant solution was studied using high speed video technique. The bubble generation was studied on a horizontal flat surface; and the natural roughness of the surface was used to produce the bubbles.  相似文献   

11.
An experimental study of saturated pool boiling from a single artificial nucleation site on a polished copper surface has been performed. Isolated bubbles grow and depart from the artificial cavity and the bubble dynamics are recorded with a high speed camera. Experimental results are obtained for bubble growth, departure and vertical rise both with and without the application of an electric field between an upper electrode and the boiling surface. As detailed in a previous paper from the same research group the high spatial and temporal resolution of the video sequences facilitated the development of a baseline experimental bubble growth law which predicts the bubble volumetric growth characteristics for a range of surface superheats at atmospheric pressure. The presence of an electric field has been found to positively augment the convective heat transfer over that of buoyant natural convection. Further to this, for high electric field strengths, the bubble shape, volumetric growth characteristics and bubble rise are different from that of the baseline cases. These results provide compelling evidence that electric fields can be implemented to alter the bubble dynamics and subsequent heat transfer rates during boiling of dielectric liquids.  相似文献   

12.
Dynamic characteristics of microscale boiling   总被引:1,自引:0,他引:1  
Microscale boiling displays some quite unusual characteristics, like the occurrence of the so-called “fictitious boiling”. This paper conducted the thermodynamic and dynamic analyses regarding the phase change and bubble nucleation in microchannels. The role of perturbations on the dynamics of bubble embryos was investigated, whence the possible causes corresponding to the depression of bubble nucleation in microscale boiling were proposed through stochastic analysis. The external perturbations produced by pressure impulses accompanied with embryo growth and collapse could markedly alter the dynamic characteristics of bubble growth. Received on 27 March 2000  相似文献   

13.
Experimental and numerical study was conducted to investigate the bubble behaviors in subcooled flow nucleate boiling. The bubble behaviors in subcooled flow boiling in an upward annular channel were investigated in the range of subcooling degree 5–30 K by visualization with high spatial and temporal resolutions using a high speed video camera and Cassegrain tele-microscope. Obvious deformation on the upstream side surface of the bubble during its growth process was frequently observed. This deformation phenomenon was caused by the condensation occurring at the upstream side bottom of the bubble, which results from the Marangoni flow along the bubble surface from the bubble bottom to the top. Since the Marangoni flow cannot be directly observed by the current experiments because it occurs in a very thin interface along the bubble surface, the numerical simulations of bubble growth and departure behaviors in subcooled flow boiling were carried out. As a result, it was confirmed that the bubble deformation was caused by the Marangoni flow along the bubble surface. Moreover, the phenomenon of wave propagation on the bubble surface during the condensation process was observed, and it can enhance the heat transfer between the bubble and the surrounding subcooled liquid.  相似文献   

14.
Nucleate pool boiling experiments with constant wall temperature were performed using pure R113 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. The bubble growth behaviors during subcooled, saturated, and superheated pool boiling were analyzed using a modified Jakob number that we newly defined. Dimensionless time and bubble radius parameters with the modified Jakob number characterized the bubble growth behavior well. These phenomena require further analysis for various pool temperature conditions, and this study will provide good experimental data with precise constant wall temperature boundary condition for such works.  相似文献   

15.
In this paper, the saturated pool boiling is investigated using lattice Boltzmann method. The written FORTRAN code is validated in two aspects: For flow, the thermodynamic consistency test and Laplace law are applied and for heat transfer, the space- and time- averaged Nusselt number is compared with Berenson analytical solution in film boiling regime. In addition, the results of bubble generation and departure are compared with some well-known analytical solutions to show the accuracy of the code. It is confirmed that bubble departure diameter and the departure frequency are related to the gravity acceleration with powers of ? 0.505 and 0.709, respectively, which is in a very good agreement with the existing analytical expressions. The present model has the ability to tune different surface tensions independent of liquid/vapor density ratio, which was unreachable using other existing numerical models of boiling. Thus, the sole effects of surface tension on boiling can also be taken into consideration using the present model. It is also shown that the departure diameter is related to the surface tension with a power of 0.485, which is in good agreement with the analytical expressions. Temperature contours are shown together with flow lines to have a better viewpoint for studying the bubble’s behavior. An intensive temperature gradient is observed in the necking area at the departure time. All the four boiling regimes in the boiling curve are simulated under constant temperature boundary condition. The Prandtl number effects on vapor bubble dynamics in the film boiling regime are investigated using the improved Shan and Chen model for the first time. Results revealed that bubbles are more resistant to depart from the vapor blanket with increasing the Prandtl number.  相似文献   

16.
The role of incident shock waves in the initiation of vapor explosions in volatile liquid hydrocarbons has been investigated. Experiments were carried out on single droplets (1–2 mm diameter) immersed in a host fluid and heated to temperatures at or near the limit of superheat. Shocks generated by spark discharge were directed at previously nonevaporating drops as well as at drops boiling stably at high pressure. Explosive boiling is triggered in previously nonevaporating drops only if the drop temperature is above a threshold temperature that is near the superheat limit. Interaction of a shock with a stably boiling drop immediately causes a transition to violent unstable boiling in which fine droplets are torn from the evaporating interface, generating a two-phase flow downstream. On the previously nonevaporating interface between the drop and the host liquid, multiple nucleation sites appear which grow rapidly and coalesce. Overpressures generated in the surrounding fluid during bubble collapse may reach values on the same level as the pressure jump across the shock wave that initiated the explosive boiling. A simple calculation is given, which suggests that shock focusing may influence the location at which unstable boiling is initiated.  相似文献   

17.
This paper presents the findings of a numerical study on the flow boiling in a micro-channel heat sink. The Navier-Stokes equations, energy equation, and the continuity equation are solved in a finite-volume framework using the front-tracking method. The numerical method is validated by comparison with the experimental results for a slug bubble growth, and vertical flow boiling. The numerical method is then used to study the effect of changing the inflow mass-velocity on the heat transfer coefficient, bubble size distribution, and the bubble nucleation frequency for a constant heat flux. The mean heat transfer coefficient of all the cases is found to be nearly twice that of the single-phase heat transfer coefficient. The bubble nucleation frequency is found to increase monotonically with the inflow mass-velocity. The bubble size distribution along the channel is found to become flatter as the mass-velocity is increased. We identify three distinct phases of the bubble evolution, namely the initial rapid growth phase, the boiling dominant phase, and finally the condensation dominant phase. Subsequently, the numerical method is used to study the effect of having a hot-spot near the bubble nucleation site on the heat transfer characteristics. It is found that the bubble nucleation frequency increases and the bubbles’ maximum volume decreases as the intensity of the hot-spot is increased for a fixed inlet flow rate. It is also observed that the average heat transfer coefficient does not change significantly with changing the intensity of the hot-spot, and that the bubble size distribution along the channel becomes flatter as the intensity of the hot-spot is increased.  相似文献   

18.
In consideration of droplet–film impaction, film formation, film motion, bubble boiling (both wall nucleation bubbles and secondary nucleation bubbles), droplet–bubble interaction, bulk air convection and radiation, a model to predict the heat and mass transfer in spray cooling was presented in this paper. The droplet–film impaction was modeled based on an empirical correlation related with droplet Weber number. The film formation, film motion, bubble growth, and bubble motion were modeled based on dynamics fundamentals. The model was validated by the experimental results provided in this paper, and a favorable comparison was demonstrated with a deviation below 10%. The film thickness, film velocity, and non-uniform surface temperature distribution were obtained numerically, and then analyzed. A parameters sensitivity analysis was made to obtain the influence of spray angle, surface heat flux density, and spray flow rate on the surface temperature distribution, respectively. It can be concluded that the heat transfer induced by droplet–film impaction and film-surface convection is dominant in spray cooling under conditions that the heated surface is not superheated. However, the effect of boiling bubbles increases rapidly while the heated surface becomes superheated.  相似文献   

19.
The objective of this study is to visualize the flow pattern and to measure heat transfer coefficient during explosive boiling of water in parallel triangular micro-channels. Tests were performed in the range of inlet Reynolds number 25–60, mass flux 95–340 kg/m2s, and heat flux 80–330 kW/m2.The flow visualization showed that the behavior of long vapor bubbles, occurring in a micro-channel at low Reynolds numbers, was not similar to annular flow with interposed intermitted slugs of liquid between two long vapor trains. This process may be regarded as explosive boiling with periodic wetting and dryout.In the presence of two-phase liquid–vapor flow in the micro-channel, there are pressure drop oscillations, which increase with increasing vapor quality.This study shows strong dependence of the heat transfer coefficient on the vapor quality. The time when liquid wets the heated surface decreases with increasing heat flux. Dryout occurs immediately after venting of the elongated bubble.  相似文献   

20.
Nucleate pool boiling experiments with constant wall temperatures were performed using R11 and R113 for saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition and to obtain measurements with high temporal and spatial resolution. Accurate heat flow rate data were obtained from microscale heater array by controlling the surface conditions at a high temporal resolution. Images of the bubble growth were captured using a high-speed CCD camera synchronized with the heat flow rate measurements. The geometry of the bubble was obtained from the images. In the asymptotic growth region, the bubble showed a growth rate that was proportional to t1/5, which was slower than the growth rate proposed in previous analytical analyses. The bubble growth behavior was analyzed using a new dimensionless parameter to permit comparisons with previous results at the same scale. The comparisons showed good agreement in the asymptotic growth region. A non-dimensional correlation for the bubble radius that can predict the bubble growth and the heat flow rate simultaneously, was suggested. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the instantaneous heat flow rate measured from the wall. Heat, other than the instantaneous heat supplied from the wall, is estimated to be transferred through the interface between bubble and liquid, even with saturated pool conditions. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号