首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enantioselective formal hetero‐Diels‐Alder reactions of trifluoromethylated enones and 2‐amino‐1,3‐butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported. The corresponding tetrahydropyran‐4‐ones are formed in up to 94 % yield and with up to 94 % ee. The reaction was carried out through a stepwise mechanism, including initial aminocatalytic aldol condensation of 2‐amino‐1,3‐butadiene to the trifluoromethylated carbonyl group followed by an intramolecular oxa‐Michael addition. Both NMR investigation and theoretical calculations on the transition state indicate that the protonated tertiary amine could effectively activate the carbonyl group of the trifluoromethyl ketone to promote the addition process through hydrogen‐bonding interaction of N?H???F and N?H???O simultaneously, and thus provide a chiral environment for the approach of amino‐1,3‐butadienes to the activated trifluoromethyl ketone, resulting in high enantioselectivity.  相似文献   

2.
We present herein a mechanistic investigation by nanoelectrospray ionization mass spectrometry of copper‐catalyzed aerobic oxidative processes involved in the N‐nitrosocarbonyl aldol reaction of N‐hydroxycarbamates. Protonated amine and copper as charge‐tags aided the detection of reaction intermediates, which verified the enamine mechanism together with a competing enol process. Our experimental results reveal that the copper‐catalyzed aerobic oxidation of N‐hydroxycarbamates may proceed through an autoxidation catalytic mechanism in which a CbzNHO. radical abstracts a hydrogen from the bound N‐hydroxycarbamate to release the nitroso intermediate through a bimolecular hydrogen‐atom transfer. In this process, the chiral diamine also works as a ligand for copper to facilitate the aerobic oxidative step. The dual role of the chiral vicinal diamine as both an aminocatalyst and a bidentate ligand was finally uncovered.  相似文献   

3.
A highly enantioselective method (up to 98 % ee) for the preparation of β‐amino alcohols was achieved by using the readily available proline‐tetrazole as the catalyst for the N‐nitroso aldol reaction of aldehydes with in situ generated nitrosocarbonyl compounds. The key to success of this reaction is the use of MnO2 as an oxidant and catechol as a Brønsted acid additive.  相似文献   

4.
In the title compound, C24H36N6O6·C2H6OS, the carbonyl groups are in an antiperiplanar conformation, with O=C—C=O torsion angles of 178.59 (15) and −172.08 (16)°. An intramolecular hydrogen‐bonding pattern is depicted by four N—H...O interactions, which form two adjacent S(5)S(5) motifs, and an N—H...N interaction, which forms an S(6) ring motif. Intermolecular N—H...O hydrogen bonding and C—H...O soft interactions allow the formation of a meso‐helix. The title compound is the first example of a helical 1,2‐phenylenedioxalamide. The oxalamide traps one molecule of dimethyl sulfoxide through N—H...O hydrogen bonding. C—H...O soft interactions give rise to the two‐dimensional structure.  相似文献   

5.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

6.
In the title compounds, C10H8N2O2, (I), and C12H12N2O2, (II), the two carbonyl groups are oriented with torsion angles of −149.3 (3) and −88.55 (15)°, respectively. The single‐bond distances linking the two carbonyl groups are 1.528 (4) and 1.5298 (17) Å, respectively. In (I), the molecules are linked by an elaborate system of N—H...O hydrogen bonds, which form adjacent R22(8) and R42(8) ring motifs to generate a ladder‐like construct. Adjacent ladders are further linked by N—H...O hydrogen bonds to build a three‐dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H...O‐linked molecules that follow the 21 screw of the b axis. It is the presence of an elaborate hydrogen‐bonding system in the crystal structure of (I) that leads to the different torsion angle for the orientation of the two adjacent carbonyl groups from that in (II).  相似文献   

7.
The title compound, C16H19NO5, crystallizes as a centrosymmetric dimer through strong O—H⋯O hydrogen‐bonding interactions between the hydroxy­phenyl and morpholino­carbonyl groups. The morpholino­carbonyl group is almost perpendicular to the propenoate moiety. Electron delocalization in the N—C(=O) fragment leads to the formation of hydrogen‐bonded S(5) ring motifs through C—H⋯O interactions.  相似文献   

8.
In the series of diaminoenones, large high‐frequency shifts of the 1H NMR of the N? H group in the cis‐position relative to the carbonyl group suggests strong N? H···O intramolecular hydrogen bonding comprising a six‐membered chelate ring. The N? H···O hydrogen bond causes an increase of the 1J(N,H) coupling constant by 2–4 Hz and high‐frequency shift of the 15N signal by 9–10 ppm despite of the lengthening of the relevant N? H bond. These experimental trends are substantiated by gauge‐independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3‐bis(isopropylamino)‐1‐(aryl)prop‐2‐en‐1‐one (12) for conformations with the Z‐ and E‐orientations of the carbonyl group relative to the N? H group. The effects of the N? H···O hydrogen‐bond on the NMR parameters are analyzed with the atoms‐in‐molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the N? H···O hydrogen bond as compared with that of 1,1‐di(pyrrol‐2‐yl)‐2‐formylethene (13) where N? H···O hydrogen bridge establishes a seven‐membered chelate ring, and the corresponding 1J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) →σ*N? H hyperconjugative interaction is weakened on going from the six‐membered chelate ring to the seven‐membered one due to a more bent hydrogen bond in the former case. A dominating effect of the N? H bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the 1J(N,H) value as a consequence of the N? H···O hydrogen bonding in the studied diaminoenones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

10.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2‐aryl‐3H‐indol‐3‐ones with α‐methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2‐allyl‐indolin‐3‐ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen‐bonding interactions, especially the enhanced N?H???O hydrogen‐bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   

11.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

12.
The crystal structures for the title compounds reveal fundamentally different hydrogen‐bonding patterns. ()‐3‐Oxo­cyclo­hexanecarboxylic acid, C7H10O3, displays acid‐to‐ketone catemers having a glide relationship for successive components of the hydrogen‐bonding chains which advance simultaneously by two cells in a and one in c [O?O = 2.683 (3) Å and O—H?O = 166°]. A pair of intermolecular close contacts exists involving the acid carbonyl group. The asymmetric unit in ()‐3‐oxo­cyclo­hexane­acetic acid, C8H12O3, utilizes only one of two available isoenthalpic conformers and its aggregation involves mutual hydrogen bonding by centrosymmetric carboxyl dimerization [O?O = 2.648 (3) Å and O—H?O = 171°]. Intermolecular close contacts exist for both the ketone and the acid carbonyl group.  相似文献   

13.
A chiral manganese porphyrin complex with a two‐point hydrogen‐bonding site was prepared and probed in catalytic C?H oxygenation reactions of 3,4‐dihydroquinolones. The desired oxygenation occurred with perfect site selectivity at the C4 methylene group and with high enantioselectivity in favor of the respective 4S‐configured secondary alcohols (12 examples, 29–97 % conversion, 19–68 % yield, 87–99 % ee). Mechanistic studies support the hypothesis that the reaction proceeds through a rate‐ and selectivity‐determining attack of the reactive manganese oxo complex at the hydrogen‐bound substrate and an oxygen transfer by a rebound mechanism.  相似文献   

14.
Both title compounds, C9H14O3, display carboxyl‐dimer hydrogen‐bonding patterns. The 4‐acetyl isomer adopts a chiral conformation with negligible disordering of the methyl and carboxyl groups and forms centrosymmetric dimers across the b and c edges of the chosen cell [O?O = 2.667 (3) Å and O—H?O = 175°]. Intermolecular C—H?O close contacts were found for both carbonyl groups. In the 2‐acetyl isomer, there is no intramolecular interaction between the carboxyl and acetyl groups and the hydrogen bonding involves centrosymmetric carboxyl dimerization across the ab and ac faces of the chosen cell [O?O = 2.668 (2) Å and O—H?O = 173°]. The carboxyl group is negligibly disordered, but significant rotational disordering was found for the acetyl methyl group. An intermolecular C—H?O close contact was found involving the ketone group.  相似文献   

15.
Highly enantioselective cationic iridium‐catalyzed hydroarylation of bicycloalkenes, by carbonyl‐directed C H bond cleavage, was accomplished using a newly synthesized sulfur‐linked bis(phosphoramidite) ligand (S‐Me‐BIPAM). The reaction provides alkylated acetophenone or benzamide derivatives in moderate to excellent yields and good to excellent enantioselectivities. Notably, the hydroarylation reaction of 2‐norbornene with N,N‐dialkylbenzamide proceeds with excellent enantioselectivity (up to 99 % ee) and high selectivity for the mono‐ortho‐alkylation product.  相似文献   

16.
The title compound, C18H28O3, was prepared by the reaction of 2,6‐di‐tert‐butylphenol with methyl acrylate under basic conditions using dimethyl sulfoxide as the promoter. The structure of this antioxidant indicates significant strain between the ortho tert‐butyl substituents and the phenolic OH group. In spite of the steric crowding of the OH group, it participates in intermolecular hydrogen bonding with the ester carbonyl O atom.  相似文献   

17.
The crystal structures of two symmetrical pyridine‐2‐carboxamides, namely N,N′‐(propane‐1,3‐diyl)bis(pyridine‐2‐carboxamide), C15H16N4O2, (I), and N,N′‐(butane‐1,4‐diyl)bis(pyridine‐2‐carboxamide), C16H18N4O2, (II), exhibit extended hydrogen‐bonded sequences involving their amide groups. In (I), conventional bifurcated amide–carbonyl (N—H)...O hydrogen bonding favours the formation of one‐dimensional chains, the axes of which run parallel to [001]. Unconventional bifurcated pyridine–carbonyl C—H...O hydrogen bonding links adjacent one‐dimensional chains to form a `porous' three‐dimensional lattice with interconnected, yet unfilled, voids of 60.6 (2) Å3 which combine into channels that run parallel to, and include, [001]. 4% of the unit‐cell volume of (I) is vacant. Compound (II) adopts a Z‐shaped conformation with inversion symmetry, and exhibits an extended structure comprising one‐dimensional hydrogen‐bonded chains along [100] in which individual molecules are linked by complementary pairs of amide N—H...O hydrogen bonds. These hydrogen‐bonded chains interlock viaπ–π interactions between pyridine rings of neighbouring molecules to form sheets parallel with (010); each sheet is one Z‐shaped molecule thick and separated from the next sheet by the b‐axis dimension [7.2734 (4) Å].  相似文献   

18.
We describe herein an unprecedented asymmetric α‐amination of β‐ketocarbonyls under aerobic conditions. The process is enabled by a simple chiral primary amine through the coupling of a catalytic enamine ester intermediate and a nitrosocarbonyl (generated in situ) derived from N‐hydroxycarbamate. The reaction features high chemoselectivity and excellent enantioselectivity for a broad range of substrates.  相似文献   

19.
The title compound, [Cu(ClO4)(C5H6N2)2(C12H12N2)]ClO4, was prepared by in situ partial ligand substitution between 3‐amino­pyridine and 4,4′‐dimethyl‐2,2′‐bipyridine at room temperature. The central copper(II) ion is five‐coordinated by one bidentate 4,4′‐dimethyl‐2,2′‐bipyridine mol­ecule, two monodentate pyridine‐coordinated 3‐amino­pyridine mol­ecules and one apical O atom from the perchlorate counter‐ion. Inter­molecular N—H⋯O and C—H⋯O hydrogen‐bonding inter­actions form a hydrogen‐bond‐sustained network.  相似文献   

20.
In the title compound [systematic name: 6‐amino‐5‐formyl‐3‐methylpyrimidine‐2,4(1H,3H)‐dione], C6H7N3O3, the intramolecular dimensions provide evidence for some polarization of the electronic structure. There is an intramolecular N—H...O hydrogen bond; this and a combination of three intermolecular N—H...O hydrogen bonds generate an almost planar ribbon containing S(6), R22(4), R21(6) and R44(16) rings. These ribbons are linked into sheets by a dipolar carbonyl–carbonyl interaction. The structure was refined as a nonmerohedral twin, with twin fractions 0.7924 (1) and 0.2076 (10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号