首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal structures are reported for three substituted 1H‐imidazole‐4,5‐dicarbonitrile compounds used as catalysts for the coupling reaction of nucleoside methyl phosphonamidites, namely 2‐(3′,5′‐dimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C19H14N4, (I), 2‐(2′,4′,6′‐trimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C20H16N4, (II), and 2‐[8‐(3,5‐dimethylphenyl)naphthalen‐1‐yl]‐1H‐imidazole‐4,5‐dicarbonitrile, C23H16N4, (III). The asymmetric unit of (I) contains two independent molecules with similar conformations. There is steric repulsion between the imidazole group and the terminal phenyl group in all three compounds, resulting in the nonplanarity of the molecules. The naphthalene group of (III) shows significant deviation from planarity. The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å. The molecules are connected into zigzag chains by intermolecular N—H...Nimidazole [for (I)] or N—H...·Ncyano [for (II) and (III)] hydrogen bonds.  相似文献   

2.
The reaction of 4,5‐dicyanoimidazole with ZnCl2 and NaN3 in the presence of (1,10)‐phenanthroline and water affords a novel one‐dimensional zinc coordination polymer, [zinc{(4,5‐ditetrazoyl)‐imidazole}{(1,10)‐phenanthroline}(H2O)]n ( 1 ), in which 1 contains a ditetrazole ligand and strongly supports the Demko‐Sharpless' tetrazole synthesis reaction. The structure was determined by single crystal X‐ray diffraction. Crystal data: P21/n; a = 11.908(18); b = 8.133(10); c = 21.01(3) Å; β = 112.46(7)°; V = 1880(1) Å3; Z = 4; R1 = 0.0882, wR2 = 0.2091.  相似文献   

3.
In the cationic complex present in the title compound, chloro­[2‐(4‐imidazolyl‐κN1)­ethyl­amine‐κN](1,10‐phenanthroline‐κ2N,N′)copper(II) chloride monohydrate, [CuCl(C5H9­N3)­(C12H8N2)]Cl·H2O, the metal centre adopts a five‐coordinate geometry, ligated by the two phenanthroline N atoms, two amine N atoms of the hist­amine ligand (one aliphatic and one from the imidazole ring) and a chloro ligand. The geometry around the Cu atom is a distorted compressed trigonal bipyramid, with one phenanthroline N and one imidazole N atom in the axial positions, and the other phenanthroline N atom, the histamine amine N atom and the chloro ligand in the equatorial positions. The structure includes an uncoordinated water mol­ecule, and a Cl ion to complete the charge. The water mol­ecule is hydrogen bonded to both Cl ions (coordinated and uncoordinated), and exhibits a close Cu⋯H contact in the equatorial plane of the bipyramid.  相似文献   

4.
In the title compound, tetra­carbonyl­(4,7‐di­phenyl‐1,10‐phen­an­throline‐N,N′)­molyb­denum(0), [Mo(C24H16N2)(CO)4], the Mo‐atom coordination is distorted octahedral, with two CO groups cis to each other, but each trans to an N atom of the 4,7‐di­phenyl‐1,10‐phenanthroline (dpphen) ligand, and with the other two CO groups trans to each other and on the axis position. The complex has better solubility than [Mo(phen)(CO)4], where phen is 1,10‐phenanthroline.  相似文献   

5.
Herein, we describe the first structural characterization of N‐alkylated twisted amides prepared directly by N‐alkylation of the corresponding non‐planar lactams. This study provides the first experimental evidence that N‐alkylation results in a dramatic increase of non‐planarity around the amide N?C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O‐Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N?C(O) moiety of N‐alkylated amides, indicating the lack of nN to π*C=O conjugation. Most crucially, we demonstrate that N‐alkylation activates the otherwise unreactive amide bond towards σ N?C cleavage by switchable coordination.  相似文献   

6.
In the title mol­ecule, C15H11NO4S, the phenyl and benzene rings are quite planar, with maximum deviations from planarity of 0.009 (2) and 0.004 (1) Å, respectively. The γ‐pyrone ring deviates from planarity and makes a dihedral angle of 8.3 (3)° with the 2‐phenyl substituent. The sulfon­amide group is involved in N—H?O hydrogen bonding.  相似文献   

7.
In the title compound, potassium 2‐butyl‐4‐chloro‐1‐{[2′‐(5‐tetrazolido)­bi­phenyl‐4‐yl]­methyl}‐1H‐imidazol‐5‐yl­methanol, K+·C22H22ClN6O?, the imidazole and tetrazole rings are at angles of 85.0 (2) and 51.8 (1)°, respectively, to the phenyl rings to which they are attached, while the dihedral angle between the latter two rings is 46.7 (1)°. The coordination sphere of the metal cation consists of six tetrazoyl N atoms, the methanol O atom and the π cloud of one of the phenyl rings. These interactions determine the formation of columns of molecular anions that lie parallel to the b axis, while hydrogen bonding contributes to intercolumnar cohesion. Far from the centre of the columns, the hydro­carbon chain is immersed in a hydro­phobic environment.  相似文献   

8.
The title mononuclear [Cu(sq)(phen)2]·3H2O complex [sq is squarate (C4O4) and phen is 1,10‐phenanthroline (C12H8N2)] has been synthesized and the structure consists of a neutral mononuclear [Cu(sq)(phen)2] unit and three solvate water mol­ecules. The CuII ion has distorted square‐pyramidal coordination geometry, comprised of one carboxyl­ate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. An extensive three‐dimensional network of OW—H⋯O/OW hydrogen bonds, face‐to‐face π–­π interactions between the 1,10‐phenanthroline aromatic rings and a weak π–ring interaction are responsible for crystal stabilization.  相似文献   

9.
The structure of bis(1,10‐phenanthroline‐κ2N,N′)(thio­sulfato‐κ2O:S)­manganese(II) methanol solvate, [Mn(S2O3)(C12H8N2)2]·CH3OH, is made up of Mn2+ centers coordinated to two bidentate phenanthroline (phen) groups and an S,O‐chelating thio­sulfate anion, forming monomeric entities. The structure of catena‐poly­[[di­aqua(2,9‐di­methyl‐1,10‐phen­anthro­line‐κ2N,N′)­manganese(II)]‐μ‐thio­sulfato‐κ2O:S], [Mn(S2O3)(C14H12N2)(H2O)2]n, is polymeric, consisting of Mn(dmph)(H2O)2 units (dmph is 2,9‐di­methyl‐1,10‐phenanthroline) linked by thio­sulfate anions acting in an S,O‐chelating manner.  相似文献   

10.
In the title copper(II) compound, [Cu(C7H4BrO2)(ClO4)(C12H8N2)], the Cu atom is five‐coordinated in a distorted square‐pyramidal geometry by the N‐ and O‐donors of 4‐bromo‐2‐formyl­phenolate, 1,10‐phenanthroline and perchlorate. Pairs of complexes are linked together by Cu⋯O(phenolate) and π–π stacking inter­actions between 4‐bromo‐2‐formyl­phenolate and 1,10‐phenanthroline. Along the crystallographic a axis, the dimers are linked by hydrogen bonds between a perchlorate O atom and a 4‐bromo‐2‐formyl­phenolate H atom, and by further π–π stacking inter­actions. Hydrogen bonding between the Br atom and a 1,10‐phenanthroline H atom takes place between the stacks of dimers.  相似文献   

11.
Four novel mononuclear ruthenium(II) complexes [Ru(dmb)2L]2+ [dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, L = imidazo‐[4,5‐f][1,10]phenanthroline (IP), 2‐phenylimidazo‐[4,5‐f][1,10]phenanthroline (PIP), 2‐(4′‐hydroxyphenyl)imidazo‐[4,5‐f] [1,10] phenanthroline (HOP), 2‐(4′‐dimethylaminophenyl) imidazo‐[4, 5‐f] [1,10] phenanthroline (DMNP)] were synthesized and characterized by ES‐MS, 1H NMR, UV‐vis and electrochemistry. The nonlinear optical properties of the ruthenium(II) complexes were investigated by Z‐scan techniques with 12 ns laser pulse at 540 nm, and all of them exhibit both nonlinear optical (NLO) absorption and self‐defocusing effect. The corresponding effective NLO susceptibility |x3| of the complexes is in the range of 2.68 × 10?12‐4.57 × 10?12 esu.  相似文献   

12.
The title compound, [Co(C19H15N3O5S)(C12H8N2)]·5H2O, has a moderately distorted octahedral coordination environment composed of two N atoms of a 1,10‐phenanthroline ligand and one N and three O atoms of an N‐{[4‐(1,3‐benzothiazol‐2‐yl)anilino]carbonylmethyl}iminodiacetate (ZL‐52−) ligand. The ring systems of the phenanthroline and ZL‐52− ligands are coplanar and the complexes pack in layers parallel to the ab plane with the rings of adjacent complexes facing one another. The layers stack along the c axis and are linked by hydrogen bonds involving the five water solvent molecules in the asymmetric unit and O atoms of the acetate groups of the ZL‐52− ligand. This is believed to be the first crystal structure of a complex of a 2‐(4‐aminophenyl)benzothiazole ligand.  相似文献   

13.
We report the template‐free synthesis and characterization of a new type of porphyrin/quinoidal‐bithiophene‐based conjugated macrocycle. X‐ray crystallographic analysis of the dimer ( 2MC ) revealed a cyclophane‐like geometry with large dihedral angles between the porphyrin and the neighboring thiophene rings, and NMR measurements and theoretical calculations confirmed a localized aromatic character of the porphyrin/thiophene rings and quinoidal character of the bithiophene linkers. Restricted rotation of the thiophene rings linked to the porphyrin unit was observed by variable‐temperature NMR measurements. The dication ( 2MC2+ ) adopts a chair‐shaped conformation to facilitate π‐electron delocalization around the whole macrocycle. As a result, the molecule is globally aromatic, with a dominant 54 π conjugation pathway. The trimer ( 3MC ) also shows localized aromatic character of porphyrin rings and conformational flexibility, but its dication ( 3MC2+ ) is rigid and globally aromatic with a dominant 82 π conjugation pathway.  相似文献   

14.
Eleven new, stable, push–pull systems that feature 4,5‐bis[4‐(N,N‐dimethylamino)phenyl]imidazole and 4,5‐dicyanoimidazole as the donor and acceptor moieties and the systematically extended and varied π‐linker were prepared and investigated. Evaluation of the measured UV/Vis spectra, electrochemical data (cyclic voltammetry (CV), rotating‐disc voltammetry (RDV), and polarography) and calculated β and γ polarizabilities showed efficient charge transfer (CT) in biimidazole‐type chromophores. Push–pull system 27 , which features a planar thiophene‐derived π‐linker, was revealed to be the most efficient chromophore within the studied series. This chromophore possessed the most bathochromically shifted CT band, the lowest electrochemical gap, and highest β and γ polarizabilities. The CT transition was most significantly affected by structural features such as π‐linker length, planarity, conjugating arrangement, and the presence of olefinic/acetylenic or 1,4‐phenylene/thiophene subunits in the π‐linker.  相似文献   

15.
Herein we disclosed the use of a remote ‘imidazole’‐based precatalyst [(para‐cymene)RuII(L)Cl]+, C‐1 where L=2‐(4‐substituted‐phenyl)‐1H‐imidazo[4,5‐f][1,10] phenanthroline) for the selective oxidation of a variety of alkyl arenes/heteroarenes and alcohols to their corresponding aldehydes or ketones in presence of tert‐butyl hydroperoxide (TBHP). The remote ‘imidazole’ moiety present in the complex facilitates the activation of oxidant and subsequent generation of active species via the release of para‐cymene from C‐1 , which in‐turn was less effective without the ‘imidazole’ moiety. The mechanistic features of C‐1 promoted oxidation of alkyl arenes were also assessed from spectroscopic, kinetic, and few control experiments. The substrate scope for C‐1 promoted oxidation reaction was assessed based on the selective oxidation of 27‐different alkyl arenes/heteroarenes and 25 different alcohols to their corresponding aldehydes/ketones in moderate to good yields.  相似文献   

16.
In the title compound, {[Zn(C8H4O5)(C12H8N2)]·H2O}n or {[Zn(OH‐BDC)(phen)]·H2O}n (where OH‐H2BDC is 5‐hydroxy­isophthalic acid and phen is 1,10‐phenanthroline), the Zn atoms are coordinated by two N atoms from the phen ligands and by four O atoms from hydroxy­isophthalate ligands in a highly distorted octahedral geometry, with Zn—O distances in the range 2.042 (4)–2.085 (5) Å and Zn—N distances of 2.133 (5) and 2.137 (5) Å. The {[Zn(OH‐BDC)(phen)]·H2O}n infinite zigzag polymer forms a helical chain of [Zn2(OH‐BDC)2]n units. Face‐to‐face π–π interactions (3.60–3.75 Å) occur between two phen rings belonging to the same helical chain. Consolidation of the packing structure is achieved by O—H⋯O hydrogen‐bonding interactions between the carboxyl­ate O atoms, the hydroxyl group and the water mol­ecule, forming two‐dimensional sheets.  相似文献   

17.
The X‐ray structure analysis of the title compound, chloro[1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐7‐(piperazin‐4‐ium‐1‐yl)‐3‐quinolinecarboxylate‐κ2O3,O4](1,10‐phenanthroline‐κ2N,N′)copper chloride dihydrate, [CuCl(C17H18FN3O3)(C12H8N2)]Cl·2H2O or [CuCl(cfH)(phen)]Cl·2H2O, where cfH is 1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐7‐(piperazin‐4‐ium‐1‐yl)‐3‐quinolinecarboxylate and phen is 1,10‐phenanthroline, shows that the geometry around the Cu ion is a slightly distorted square pyramid. Two O atoms of the carbonyl and carboxyl groups of ciprofloxacin and two N atoms of 1,10‐phenanthroline are coordinated to the metal centre in the equatorial plane, and a Cl ion is coordinated at the apical position. Extensive intermolecular hydrogen bonding produces a supramolecular structure that consists of alternating six‐ and 12‐membered rings.  相似文献   

18.
In the title cadmium metal–organic framework complex, [Cd(C8H3NO6)(C24H16N2)]n or [Cd(NIPH)(dpphen)] (NIPH is nitroisophthalate and dpphen is 4,7‐diphenyl‐1,10‐phenanthroline), the unique CdII cation in a general position is coordinated by four carboxy O atoms from three symmetry‐related NIPH anions and two N atoms from a dpphen ligand. The CdII cations are bridged by pairs of NIPH anions to generate a dinuclear molecular building block, [Cd2N4(CO2R)4], with a Cd...Cd separation of 4.0936 (10) Å. Each such building block is connected to four adjacent dinuclear building blocks by NIPH anions, resulting in a two‐dimensional layer framework in the bc plane. The dpphen ligands occupy the space between these layers and are linked by π–π interactions, with a separation of 3.4541 (6) Å between the central aromatic rings of inversion‐related dpphen ligands. The thermogravimetric and photoluminescent properties of the complex have also been investigated.  相似文献   

19.
To create a design guideline for efficient third‐order nonlinear optical (NLO) molecules, the chain‐length (n) dependences of the diradical character y and the longitudinal second hyperpolarizability γ of quinoidal oligothiophenes (QTs), from monomers to octamers, involving thiophene‐S,S‐dioxide rings are investigated by using the density functional theory method. It turns out that the diradical character of the modified QTs is reduced as compared to those of the pristine QTs. By introducing an appropriate number of oxidized rings into the QT framework, intermediate y values can be achieved even in the systems with large values of n, in which the pristine QTs are predicted to have pure diradical character. Such intermediate diradical oligomers are shown to exhibit enhanced γ values as compared to the pristine QTs with the same value for n. From the calculation results, the introduction of the optimal number of thiophene‐S,S‐dioxide rings is predicted to be an efficient chemical modification for optimizing the third‐order NLO properties of open‐shell QTs through tuning the diradical characters.  相似文献   

20.
The crystal structure of 11‐[4‐(1,3‐benzodioxol‐5‐yl­methyl)­piperazino]‐8‐chloro‐5H‐dibenzo­[b,e][1,4]­diazepine, C25H23ClN4O2, confirms the buckled nature of the dibenzodiazepine nucleus, with the central seven‐membered heterocycle in a boat conformation and the dihedral angle between the planes of the aromatic rings being similar to that found for the parent compound, clozapine. The piperazine ring displays an almost perfect chair conformation, with the piperonyl group assuming an equatorial orientation. The relative position of the dibenzodiazepine and piperazine ring systems is controlled by the planarity of the piperazine N atom in the amidine moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号