首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we have obtained some new exact solutions of Einstein’s field equations in a spatially homogeneous and anisotropic Bianchi type-V space-time with perfect fluid distribution along with heat-conduction and decaying vacuum energy density Λ by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. We find that the constant value of deceleration parameter is reasonable for the present day universe. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The cosmological constant Λ is found to be a decreasing function of time and positive which is corroborated by results from recent supernovae Ia observations. Expressions for look-back time-redshift, neoclassical tests (proper distance d(z)), luminosity distance red-shift and event horizon are derived and their significance are described in detail. The physical and geometric properties of spatially homogeneous and anisotropic cosmological models are discussed.  相似文献   

2.
Kalyani Desikan 《Pramana》1995,45(6):511-517
BD-FRW universe filled with imperfect fluid having bulk viscosity is investigated under the framework of Israel-Stewart-Hiscock causal theory. The field equations have been solved by using the relationφ=KR α whereK andα are constants, between the Brans-Dicke scalar fieldϕ and the scale factorR. This relation, in fact, leads to a constant deceleration parameterq. It is shown that the constancy of the deceleration parameter permits only two possibilities i.e. eitherH=constant withm=1 orm=(1+bα)/(2(1+b) −α), irrespective of the value ofɛ.  相似文献   

3.
We consider Einstein’s field equations with variable gravitational and cosmological “constants” for a spatially homogeneous and anisotropic Bianchi-I space-time. A law of variation for the Hubble parameter, which is related to the average scale factor and yields a constant value of the deceleration parameter, is assumed to solve the field equations. The gravitational constant is allowed to follow a power-law form. We find that a time-increasing gravitational constant is suitable for describing the present evolution of universe. The solutions reveal the dynamics of a universe, which expands forever. The physical interpretation of the solutions is discussed in detail.  相似文献   

4.
The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. We find that the constant value of deceleration parameter is reasonable for the present day universe. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (Phys. Rev. D 28:2414, 1983) is used to construct massive string cosmological models for which we assume that the expansion (θ) in the model is proportional to the component s11\sigma^{1}_{1} of the shear tensor sji\sigma^{j}_{i}. This condition leads to A=(BC) m , where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at present epoch which is in good agreement by the results from recent supernovae observations. Some physical and geometric behaviour of the models are also discussed.  相似文献   

5.
The present paper envisages a spatially homogeneous and anisotropic Bianchi II massive string cosmological models with time-decaying Λ term in general relativity. By using the variation law of Hubble’s parameter, the Einstein’s field equations have been solved for two general cases. The first case involving a power law solution describes the dynamics of universe from big bang to present epoch while the second case admit an exponential solution seems reasonable to project dynamics of future universe. We observed that massive strings dominate in early universe and eventually disappear at late time, which is consistent with the current astronomical observations. It has been found that the cosmological constant (Λ) is a decreasing function of time and it approaches to small positive value at sufficiently large time. The thermodynamic properties of anisotropic Bianchi II universe are studied and also the absolute temperature and entropy distribution are given explicitly. The relations between thermodynamic parameters and cosmological constant Λ has been established. Physical behavior of the derived model is elaborated in detail.  相似文献   

6.
The variation law for generalized mean Hubble’s parameter is discussed in a spatially homogeneous and anisotropic Bianchi type V space-time with perfect fluid along with heat-conduction. The variation law for Hubble’s parameter, that yields a constant value of deceleration parameter, generates two types of solutions for the average scale factor, one is of power-law type and other one of exponential form. Using these two forms of the average scale factor, exact solutions of Einstein field equations with a perfect fluid and heat conduction are presented for a Bianchi type V space-time, which represent expanding singular and non-singular cosmological models. We find that the constant value of deceleration parameter is reasonable for the present day universe. The physical and geometrical properties of the models are also discussed in detail.  相似文献   

7.
Bermann (1983) [Nuovo Cimento B, 74, 182] obtained a cosmological model with the help of special law of variation for Hubble's parameter that yields constant deceleration parameter models of the universe. Here, we present Bianchi-I model with negative constant deceleration parameter in Brans-Dicke (1961) [Phys. Rev., 124, 925] theory in the presence of perfect fluid source with disordered radiation. Some physical properties of the model are also discussed. PACS numbers: 98-90.  相似文献   

8.
In this paper, we have considered a model for Brans-Dicke scalar field in presence of Chaplygin gas and interaction between them. We have shown that the BD parameter ω is constant or not, the Chaplygin gas provides early deceleration and late time acceleration of the universe. The graphical representation of statefinder parameters shows the total evolution of the universe starts from radiation era to phantom model.  相似文献   

9.
In the present paper, we investigate the possibility of a variation law for Hubble’s parameter H in the background of spatially homogeneous, anisotropic Bianchi type V space-time with perfect fluid source and time-dependent cosmological term. The model obtained presents a cosmological scenario which describes an early deceleration and late time acceleration. The model approaches isotropy and tends to a de Sitter universe at late times. The cosmological term Λ asymptotically tends to a genuine cosmological constant. It is observed that the solution is consistent with the results of recent observations.  相似文献   

10.
We consider the flat Robertson–Walker model in scalar-tensor theory proposed by Lau and Prokhovnik. In this model, the field equations are solved by using “gamma-law” form of equation of state p=(γ−1)ρ, where the adiabatic parameter ‘gamma’ (γ) varies continuously as the universe expands. Our aim is to study how the adiabatic parameter γ should vary so that in the course of its evolution the universe goes through a transition from an inflationary to a radiation-dominated phase. A unified one parameter function of γ has been considered to describe the two early phases of evolution of universe. The solutions show the power-law expansion and cosmological constant is found to be positive and decreasing function of cosmic time. The solutions are compatible with the Dirac’s large number hypothesis. The deceleration parameter has been presented in a unified manner in terms of scale factor, which describes the inflation of the model. The nature of singularity and the physical properties have been discussed in details.  相似文献   

11.
12.
In this paper, a spatially homogeneous and anisotropic Bianchi type-I space-time filled with perfect fluid is investigated within the framework of a scalar-tensor theory proposed by Saez and Ballester. Two different physically viable models of the universe are obtained by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. One of the models is found to generalize a model recently investigated by Reddy et al. (Astrophys. Space Sci. 306:171, 2006). The Einstein’s field equations are solved exactly and the solutions are found to be consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the models is carried out.  相似文献   

13.
The present study deals with a spatially homogeneous and anisotropic Bianchi type-I (B-I) cosmological models representing massive strings in normal gauge for Lyra’s manifold by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law type. Using these two forms, Einstein’s modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier, P.S.: Phys. Rev. D 28, 2414 (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ) in the model is proportional to the component s1 1\sigma^{1}_{~1} of the shear tensor sj i\sigma^{j}_{~i}. This condition leads to A=(BC) m , where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β behaves like cosmological term Λ in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the both decelerating and accelerating universes. The strings dominate in the early universe and eventually disappear from the universe for sufficiently large times. This is in consistent with the current observations. Some physical and geometric behaviour of these models are also discussed.  相似文献   

14.
In this paper it has been shown that the neutrino bulk viscous stresses can give rise to the late time acceleration of the universe. It is found that a number of spatially flat FRW models with a negative deceleration parameter can be constructed using neutrino viscosity and one of them mimics a ΛCDM model. This does not require any exotic dark energy component or any modification of gravity.  相似文献   

15.
The consequences of taking the total active gravitational mass of the universe phasewise constant together with a decaying vacuum energy in the background of Robertson-Walker space-time are investigated. The model so determined admits a contracted Ricci-collineation along the fluid flow vectorν i. It is geometrically closed but ever-expanding and does not possess the initial singularity, horizon, entropy, monopole or cosmological constant problems of the standard big bang cosmology. Estimates of the present matter; radiation and vacuum energy densities, the age of the universe and the present values of the deceleration parameter and the scale factor are also obtained.  相似文献   

16.
In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic ‘LEC’ and power-law ‘PLEC’ in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities u, equation of state parameter w D and deceleration parameter q are obtained. We show that the cosmic coincidence problem is solved for interacting models. By studying the effect of interaction in EoS parameter of both models, we see that the phantom divide may be crossed and also understand that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated.  相似文献   

17.
A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation D L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is z t = 1.095+0.264 −0.155. Because the fitted data covers the range of the predicted transition redshift z t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.  相似文献   

18.
The dark energy models with variable equation of state parameter ω are investigated by using law of variation of Hubble’s parameter that yields the constant value of deceleration parameter. Here the equation of state parameter ω is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical significance of the dark energy models have also been discussed.  相似文献   

19.
Bulk Viscous anisotropic Bianchi-III cosmological models are investigated with time dependent gravitational and cosmological constants in the framework of Einstein’s general relativity. In order to get some useful information about the time varying nature of G and Λ, we have assumed an exponentially decaying rest energy density of the universe. The extracted Newtonian gravitational constant G varies with time but its time varying nature depends on bulk viscosity and the anisotropic nature of the model. The cosmological constant Λ is found to decrease with time to a small but positive value for the models.  相似文献   

20.
We compare the cosmological kinematics obtained via our law of linearly varying deceleration parameter (LVDP) with the kinematics obtained in the ΛCDM model. We show that the LVDP model is almost indistinguishable from the ΛCDM model up to the near future of our universe as far as the current observations are concerned, though their predictions differ tremendously into the far future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号