首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, for the first time, gas chromatography-mass spectrometry (GC-MS) following headspace single-drop microextraction (HS-SDME) and simultaneous derivatization was developed for fast determination of short-chain aliphatic amines (SCAAs) in water samples. In the proposed method, SCAAs in water samples were headspace extracted and concentrated by suspending a microdrop of solvent, and SCAAs extracted in the microdrop of solvent were simultaneously and rapidly reacted with pentafluorobenzaldehyde (PFBAY). The formed SCAA derivatives were analyzed by GC-MS. The HS-SDME parameters of solvent selection, solvent volume, sample temperature, extraction time and stirring rate were studied, and the method linearity, precision and detection limits, were also studied. The results show that the proposed method provided good linearity (R(2)>0.99, 5.0-500 ng/ml), low detection limit (0.6-1.1 ng/ml), and good precision (RSD value less than 10%). The proposed method was further tested by its application to quantitative analysis of SCAAs in four wastewater samples. The experiment results have demonstrated that GC-MS following HS-SDME and simultaneous derivatization is a simple, rapid and low-cost method for the determination of SCAAs in water samples.  相似文献   

2.
Zhang H  Shi Y  Wei S  Wang Y  Zhang H 《Talanta》2011,85(2):1081-1087
Ultrasonic nebulization extraction (UNE) coupled with headspace single-drop microextraction (HS-SDME) was developed. In the UNE process, the analytes were transferred from the aqueous phase to the gas phase. Then the analytes were transferred from the gas phase to the solvent phase by the carrier gas and extracted and enriched with suspended microdrop solvent. Finally, the microdrop solvent injected into GC-MS system. The parameters affecting extraction performance, such as type of suspended solvent, microdrop volume, flow rate of carrier gas, temperature of extraction vessel and extraction time were investigated and optimized. The proposed method can be applied for the extraction and enrichment of the volatile and semivolatile compounds simultaneously. The extraction efficiency of the proposed method was compared with that of ultrasonic extraction (UE) and UE-HS-SDME. Compared with UE-HS-SDME, the contents of constituents in the extract obtained by the proposed method were closer to those obtained by hydrodistillation (HD), which is a standard extraction method.  相似文献   

3.
In the study, we developed a simple, rapid, sensitive, and inexpensive method for determination of the disease biomarkers of acetone, hexanal and heptanal in human blood. For the first time, derivatization of carbonyls with O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine (PFBHA) was combined with headspace single-drop microextractin (HS-SDME) and gas chromatography-mass spectrometry (GC–MS) and applied to the analysis of acetone, hexanal, and heptanal in human blood. At first, acetone, hexanal and heptanal in blood were derivatized with PFBHA and formed oximes in several seconds. Sequentially, the oximes were headspace extracted and concentrated by a microdrop solvent. Finally, the extracted oximes were analyzed by GC–MS. HS-SDME conditions and method validations were studied. Due to needing of only 2 μl organic solvent, short extraction time of 8 min, and simple operation, derivatization-HS-SDME was shown to be a rapid, simple, and inexpensive technique for analysis of acetone, hexanal, and heptanal in human blood. Moreover, it had low detection limit values from 0.24 to 0.62 nM, and good reproducibility (R.S.D. less than 12%).  相似文献   

4.
In this work, for the first time, headspace (HS) single‐drop microextraction and simultaneous derivatization followed by GC‐MS was developed to determine the aliphatic amines in tobacco samples. In the HS extraction procedure, the mixture of derivatization reagent and organic solvent was employed as the extraction solvent for HS single‐drop microextraction and in situ derivatization of aliphatic amine in the samples. Fast extraction and simultaneous derivatization of the analytes were performed in a single step, and the obtained derivatives in the microdrop extraction solvent were analyzed by GC‐MS. The optimized experiment conditions were: sample preparation temperature of 80°C and time of 30 min, HS extraction solvent (the mixture of benzyl alcohol and 2,3,4,5,6‐pentafluorobenzaldehyde) volume of 2.0 μL, extraction time of 90 s. With the optimal conditions, the method validations were also studied. The method has good linearity (R2 more than 0.99), accepted precision (RSD less than 13%), good recovery (98–104%) and low limit of detection (0.11–0.97 μg/g). Finally, the proposed technique was successfully applied to the analyses of aliphatic amines in tobacco samples of seven different brands. It was further demonstrated that the proposed method offered a simple, low‐cost and reliable approach to determine aliphatic amines in tobacco samples.  相似文献   

5.
A new method involving headspace single-drop microextraction (SDME) with in-drop derivatization and CE is developed for the preconcentration and determination of free cyanide. An aqueous microdrop (5 microL) containing Ni(II)-NH(3) (as derivatization agent), sodium carbonate and ammonium pyromellitate (as internal standard) was used as the acceptor phase. The extracted cyanide forms a stable Ni(CN)(4) (2-) complex which is then determined by CE. Common experimental parameters (sample and acceptor phase pH, extraction temperature, extraction time and sample ionic strength) affecting the extraction efficiency were investigated. Using headspace SDME, free cyanide can be effectively extracted from the neutral solutions, i.e. without the acidification of the sample which often is prone to errors due to incomplete liberation and artefactual cyanide production. Proposed SDME-CE method provided about 58-fold enrichment in 20 min. The calibration curve was linear for concentrations of CN(-) in the range from 0.25 to 20 micromol/L (R(2) = 0.997). The LOD (S/N = 3) was estimated to be 0.08 micromol/L of CN(-). Such a detection sensitivity is high enough for free cyanide determination in common environmental and physiological samples. Finally, headspace SDME was applied to determine free cyanide in human saliva and urine samples with spiked recoveries in the range of 91.7-105.6%. The main advantage of this method is that sample clean-up, preconcentration and derivatization procedures can be completed in a single step. In addition, the proposed technique does not require any sample pretreatment and thus is much less susceptible to interferences compared to existing methods.  相似文献   

6.
A simple, rapid, sensitive, and solvent-free method was developed for determination of plant-signalling compounds, the three C6-aldehydes hexanal, (Z)-3-hexenal, and (E)-2-hexenal, in tomato plant emission by gas chromatography-mass spectrometry (GC-MS) and solid-phase microextraction (SPME) with on-fiber derivatization. In this method, O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine (PFBHA) in aqueous solution was first headspace adsorbed onto a 65 microm poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber at 25 degrees C for 5 min, and then the fiber with adsorbed PFBHA was used for headspace extraction of tomato plant emission at 25 degrees C for 6 min. Finally, the resulting oximes adsorbed on the fiber were desorbed and analyzed by GC-MS. Extraction conditions and method validation were studied. The proposed method had low detection limit values for the three aldehydes from 0.1 to 0.5 ng/L and good precision (RSD less than 10%). In this work, the method was applied to investigation of tomato plant defense response to Helicoverpa armigera.  相似文献   

7.
A headspace solvent microextraction method was developed for the trace determination of geosmin, an odorant compound, in water samples. After performing the extraction by a microdrop of an organic solvent, the microdrop was introduced directly into a GC-MS injection port. One-at-the-time optimization strategy was applied to investigate and optimize some important extraction parameters such as type of solvent, drop volume, temperature, stirring rate, ionic strength, sample volume, and extraction time. The analytical data exhibited an RSD of less than 5% (n = 5), a linear calibration range of 5-900 ng/L (r2 > 0.998), and a detection limit of 0.8 and 3.3 ng/L using two different sets of selected ions. The proposed method was successfully applied to the extraction and determination of geosmin in the spiked real water sample and reasonable recovery was achieved.  相似文献   

8.
In this work, for the first time, microwave distillation (MD) coupled with simultaneous headspace single-drop microextraction (HS-SDME) was developed for the determination of the volatile components in the Chinese herb, Artemisia capillaris Thunb. The volatile components were rapidly isolated by MD, and simultaneously extracted and concentrated by using a dodecane microdrop. The volatile oil extracted in the microdrop solvent was analyzed by gas chromatography-mass spectrometry (GC-MS). The experimental parameters of solvent selection, microdrop volume, microwave power, irradiation time and sample amount were investigated, and the method precision was also studied. The optimal parameters were extraction solvent of dodecane, solvent volume of 2.0 microL, microwave power of 400 W, irradiation time of 4 min, and sample amount of 2.0 g. Thirty-five volatile compounds present in Artemisia capillaris Thunb. were identified by using the proposed method, which were identical with those obtained by the conventional steam distillation method. The experimental results showed that MD-HS-SDME is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs.  相似文献   

9.
Angelica sinensis (danggui in Chinese) is a common traditional Chinese medicine (TCM), and its essential oil has been used for the treatment of many diseases such as hepatic fibrosis. Z-Ligustilide has been found to be an important active component in the TCM essential oil. In this work, for the first time, headspace single-drop microextraction (HS-SDME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for the determination of Z-ligustilide in rabbit plasma after oral administration of essential oil of danggui. The extraction parameters of solvent selection, solvent volume, sample temperature, extraction time, stirring rate, and ion strength were systemically optimized. Furthermore, the method linearity, detection limit, and precision were also investigated. It was shown that the proposed method provided good linearity (0.02-20 microg/mL, R2 = 0.997), low detection limit (10 ng/mL), and good precision (RSD value less than 9%). Finally, HS-SDME followed by GC/MS was used for fast determination of Z-ligustilide in rabbit plasma at different time intervals after oral administration of danggui essential oil. The experimental results suggest that HS-SDME followed by GC/MS is a simple, sensitive, and low-cost method for the determination of Z-ligustilide in plasma, and a low-cost approach to pharmacokinetics studies of active components in TCMs.  相似文献   

10.
《Analytical letters》2012,45(8):1544-1557
Geosmin (GSM) and 2-methylisoborneol (MIB) were extracted from water samples, adsorbed in organic solvent microdrop by headspace liquid-phase microextraction (HS-LPME), and were analyzed by gas chromatography-mass spectrometry (GC-MS). Influence factors such as the extraction solvent types, headspace and microdrop volumes, stirring rate, equilibrium and extraction time, and ionic strength for HS-LPME efficiency were thoroughly evaluated. Under optimized extraction and detection conditions, the calibration curves of GSM and MIB were linear in the range of 5–1000 ng/L. The detection limits of GSM and MIB were 1.1 and 1.0 ng/L, respectively. Average recoveries of 95.45–113.7% (n = 5) were obtained and method precisions were also satisfactory. Trace levels of the off-flavor compounds at ng/L in tap water and raw water were successfully quantified.  相似文献   

11.
Wu Y  Hu B  Hou Y 《Journal of separation science》2008,31(21):3772-3781
Two methods based on headspace single drop microextraction (HS-SDME) and headspace hollow fiber liquid phase microextraction (HS-HF-LPME) were developed and critically compared with HPLC-UV determination of phenols (including phenol (Ph), 2-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP)) in this paper. The significant parameters affecting the extraction efficiency of the target analytes in both extraction modes were studied and the optimal extraction conditions were established. Under the optimal conditions, the detection limits (S/N = 3) for Ph, CP, DCP and TCP obtained by HS-SDME-HPLC-UV and HS-HF-LPME-HPLC-UV were 2.1, 0.2, 0.8,1.1 ng/mL and 4.2, 0.4, 0.4, 0.4 ng/mL with enrichment factors of 15.8, 198.9, 159.7, 194.8 and 9.2, 149.9, 301.9, 411.1, respectively. The RSDs obtained by HS-SDME-HPLC-UV and HS-HF-LPME-HPLC-UV were 3.7, 4.0, 9.8, 6.7% and 6.3, 3.6, 3.1, 4.8% for Ph, CP, DCP and TCP, respectively. Both extraction modes have a comparable analytical performance, but HS-HF-LPME was more robust than HS-SDME, while HS-SDME was simpler than HS-HF-LPME. The two headspace microextraction modes were applied for HPLC-UV determination of target phenols in water, honey and toner samples, and the determined values obtained by both techniques were in good agreement with each other.  相似文献   

12.
Ultrasound-assisted dispersive liquid-liquid microextraction (UDLLME) and simultaneous derivatization followed by GC-MS was developed for the analysis of four aldehydes including acetaldehyde (ACE), propionaldehyde (PRO), butyraldehyde (BUT) and valeraldehyde (VAL) in water samples. In the proposed method, the aldehydes were derivatized with O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine (PFBHA) and extracted by UDLLME in aqueous solution simultaneously; finally, the derivatives were analyzed by GC-MS. The experimental parameters were investigated and the method validations were studied. The optimal conditions were: aqueous sample of 5 mL, PFBHA of 50 μL, 1.0 mL ethanol (disperser solvent) containing 20 μL chlorobenzene (extraction solvent), ultrasound time of 2 min and centrifuging time of 3 min at 6000 rpm. The proposed method provided satisfactory precision (RSD 1.8-10.2%), wide linear range (0.8-160 μg/L), good linearity (R(2) 0.9983-0.9993), good relative recovery (85-105%) and low limit of detection (0.16-0.23 μg/L). The proposed method was successfully applied for the analysis of aldehydes in water samples. The experimental results showed that the proposed method was a very simple, rapid, low-cost, sensitive and efficient analytical method for the determination of trace amount of aldehydes in water samples.  相似文献   

13.
A simple, rapid and inexpensive procedure for extraction and analysis of volatile halocarbons in water samples was presented using the headspace single-drop microextraction (HS-SDME) technique and gas chromatography with microcell electron capture detector (GC-μECD). Operation parameters. such as extraction solvent. headspace volume. organic drop volume. salt concentration. temperature and sampling time, were studied and optimized. Extraction of 10 volatile halocarbon compounds was achieved using the optimized method. Calibration curves of 10 target compounds yielded good linearity in the respective range of concentration (R 2 ≥ 0.9968, chlorodibromomethane in the concentration range of 0.05–50 μg/L). The limits of detection were found between 0.002 (tetrachloroethene) and 0.374μg/L (1,1,2-trichloroethane). and relative standard deviations (RSD%) ranged between 4.3 (chloroform) and 9.7% (1,1,2,2-tetrachloroethane). Spiked recoveries of tap water and ground water agreed well with the known values between 118.97 (20.0μg/L of 1,1,2-trichloroethane) and 82.61% (10.0μg/L of tetrachloroethene), demonstrating that the HS-SDME combined GC-μECD was a useful and reliable technique for the rapid determination of volatile halocarbon compounds in water samples.  相似文献   

14.
《Analytical letters》2012,45(13):1875-1884
A headspace liquid phase microextraction (HS-LPME) method has been developed and optimized for the residual solvent determination in pharmaceutical products. A microdrop of n-hexanol containing isopropanol (as internal standard) was suspended at the tip of a gas chromatographic syringe and exposed to the headspace of the sample solution. After extraction for an optimized time, the microdrop was retracted into the syringe and injected directly into a GC injection port. Critical experimental factors, including extraction solvent, temperature, ionic strength, stirring rate, extraction time, equilibrium time, drop volume, and sample volume were investigated and optimized. Compared with the static headspace technique, HS-LPME method showed superior results, being compatible with the pharmaceutical samples.  相似文献   

15.
In the present work the determination of benzene, toluene, ethylbenzene and o-xylene (BTEX) in environmental sample solutions using gas chromatography with flame ionisation detection (GC-FID) combined with three different sampling techniques, such as; direct single drop microextraction (DI-SDME), headspace single drop microextraction (HS-SDME) and ultrasonic assisted HS-SDME, were compared. In all of these techniques, for the determination of BTEX, the experimental parameters such as organic solvent effect, extraction time, agitation speed and salting effect were optimised. At their optimised conditions of operation the detection limits, times of extraction and precision for the three techniques are established. A detailed comparison of the analytical performance characteristics of these techniques for final GC-FID determination of BTEX in water samples was given. The technique provided a linear range of 50–20000?ng?mL–1 for DI-SDME and 10–20000?ng?mL–1 for HS-SDME methods, good repeatability (RSDs <4.72–7.74% for DI-SDME and 1.80–7.05% for HS-SDME (n?=?5), good linearity (r?≥?0.9978) and limits of detection (LODs) in the range of 0.006–10?ng?mL?1 for DI-SDME, 0.1–3?ng?mL–1 for HS-SDME methods (S/N?=?3). Then the optimised techniques were also applied to real samples (river and waste waters) containing BTEX and similar precision (RSD?<?8.2,?n?=?3) was obtained.  相似文献   

16.
《Analytical letters》2012,45(14):2257-2266
Fire accelerants such as gasoline, kerosene, and diesel have commonly been used in arson cases. Improved analytical methods involving the extraction of fire accelerants are necessary to increase sample yield and to reduce the number of uncertain findings. In this study, an analytical method based on headspace single drop microextraction (HS-SDME) followed by gas chromatography–flame ionization detection (GC-FID) has been developed for the analysis of simulated fire debris samples. Curtain fabric was used as the sample matrix. The optimized conditions were 2.5 μL benzyl alcohol microdrop exposed for 20 min to the headspace of a 10 mL aqueous sample containing accelerants placed in 15-mL sample vial and stirred at 1500 rpm. The extraction method was compared with the solvent extraction method using n-hexane for the determination of fire accelerants. The HS-SDME process is driven by the concentration difference of analytes between the aqueous phases containing the analyte and the organic phase constituting the microdrop of a solvent. The limit of detection of HS-SDME for kerosene was 1.5 μL. Overall, the HS-SDME coupled with GC-FID proved to be rapid, simple and sensitive and a good alternative method for the analysis of accelerants in fire debris samples.  相似文献   

17.
A simple analytical procedure based on single-drop microextraction combined with in-syringe derivatization and GC-MS was developed for determination of some phenolic acids in fruits and fruit juices. Cinnamic acid, o-coumaric acid, caffeic acid, and p-hydroxybenzoic acid were used as model compounds. The analytes were extracted from a 3-mL sample solution using 2.5 microL of hexyl acetate. The extracted phenolic acids were derivatized inside the syringe barrel using 0.7 microL of N,O-bis(trimethylsilyl)acetamide before injection into the GC-MS. The influence of derivatization conditions on the yield of in-syringe silylation was studied. Experimental SDME parameters such as selection of organic solvent, solvent volume, extraction time, extraction temperature, pH, and ionic strength of the solution on the extraction performance were studied. The method provided fairly good precision for all compounds (2.4-11.9%). Detection limits were found to be between 0.6 and 164 ng/mL within an extraction time of 20 min in the GC-MS full scan mode.  相似文献   

18.
As halonitromethanes (HNMs) have begun to play an increasingly important role as disinfection by-products, the development of a highly sensitive method for their analysis has become a priority. The mass spectrometric behavior of the 9 HNMs revealed that trihalonitromethanes are more unstable than di- or monohalonitromethanes under common chromatographic conditions. The absence of a comprehensive method for HNMs has given rise to the development of the first method for the whole array of these species, involving the selection of a solventless technique. Single drop microextraction in the headspace mode (HS-SDME) was selected as it is inexpensive and easy to operate. Comparative measurements through EPA liquid-liquid extraction (LLE) method for halogenated volatile compounds, show this approach to be superior to the manual LLE procedure (the average limits of detection (LODs) for the 9 HNMs were 0.5 and 1 μg/L for the HS-SDME and EPA methods, respectively), adequate precision (8.2 and 7.0% for HS-SDME and EPA methods, respectively) and does not consume excessive solvent since the total extract (~2 μL) was injected completely into the GC-MS instrument. The method was used to measure HNMs in treated water and the results were compared to the EPA method in parallel.  相似文献   

19.
In this paper, an ultrasound-assisted headspace liquid-phase microextraction with in-drop derivatization was developed for the extraction and determination of hexanal and heptanal as the biomarkers in human blood. In the method, a polychloroprene rubber (PCR) tube was utilized as container to load extraction solvent (methyl cyanide) and derivatization reagent (2,4-dinitrophenylhydrazine, 2,4-DNPH). Volatile aldehydes were headspace extracted and simultaneously derivatized in the droplet, followed by LC-UV detection of the formed hydrazones. The stability of organic solvent and the sensitivity of the method enhanced greatly. Under the optimal conditions, good linearity was obtained in the concentration range of 0.01–10 μmol L−1 (r > 0.997) and the limits of detection (LOD) for hexanal and heptanal were 0.79 and 0.80 nmol L−1, respectively. The recoveries in blood sample ranged from 75.2% to 101.1% with the inter- and intra-day precisions less than 9.8%. The method possesses the advantages such as simplicity, sensitivity, efficiency, low consumption of solvent, and little interference from sample matrix. It provides great potential for the investigation of volatile disease biomarkers (aldehydes) in complex biological samples.  相似文献   

20.
李玫瑰  李元星  毛丽秋 《色谱》2007,25(1):35-38
将一种新型、简单、快速、环境友好的萃取方法微滴液相微萃取(SDME)与气相色谱-质谱法结合用于快速分析食品中的几种酞酸酯(PAEs)。考察了萃取溶剂的种类及用量、微液滴在样品溶液中的深度、萃取时间及搅拌子的搅拌速度对微滴液相微萃取的影响。优化的萃取条件为:萃取溶剂为2.0 μL甲苯,微液滴在样品溶液中的深度为0.75 cm,搅拌速度为1000 r/min,萃取时间为20 min。该方法的线性范围为0.1~4000 μg/L,检测限为25 ng/L~0.8 mg/L,加标回收率为87.1%~114.4%,相对标准偏差为4.9%~11.6%。微滴液相微萃取所需的有机溶剂量很小,是一种快速、简单、安全、有效的水溶性样品的前处理方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号