首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have theoretically examined the relative binding affinities (RBA) of typical ligands, 17beta-estradiol (EST), 17alpha-estradiol (ESTA), genistein (GEN), raloxifene (RAL), 4-hydroxytamoxifen (OHT), tamoxifen (TAM), clomifene (CLO), 4-hydroxyclomifene (OHC), diethylstilbestrol (DES), bisphenol A (BISA), and bisphenol F (BISF), to the alpha-subtype of the human estrogen receptor ligand-binding domain (hERalpha LBD), by calculating their binding energies. The ab initio fragment molecular orbital (FMO) method, which we have recently proposed for the calculations of macromolecules such as proteins, was applied at the HF/STO-3G level. The receptor protein was primarily modeled by 50 amino acid residues surrounding the ligand. The number of atoms in these model complexes is about 850, including hydrogen atoms. For the complexes with EST, RAL, OHT, and DES, the binding energies were calculated again with the entire ERalphaLBD consisting of 241 residues or about 4000 atoms. No significant difference was found in the calculated binding energies between the model and the real protein complexes. This indicates that the binding between the protein and its ligands is well characterized by the model protein with the 50 residues. The calculated binding energies relative to EST were very well correlated with the experimental RBA (the correlation coefficient r=0.837) for the ligands studied in this work. We also found that the charge transfer between ER and ligands is significant on ER-ligand binding. To our knowledge, this is the first achievement of ab initio quantum mechanical calculations of large molecules such as the entire ERalphaLBD protein.  相似文献   

2.
G-protein coupled receptors (GPCRs) are important drug targets for various diseases and of major interest to pharmaceutical companies. The function of individual members of this protein family can be modulated by the binding of small molecules at the extracellular side of the structurally conserved transmembrane (TM) domain. Here, we present Snooker, a structure-based approach to generate pharmacophore hypotheses for compounds binding to this extracellular side of the TM domain. Snooker does not require knowledge of ligands, is therefore suitable for apo-proteins, and can be applied to all receptors of the GPCR protein family. The method comprises the construction of a homology model of the TM domains and prioritization of residues on the probability of being ligand binding. Subsequently, protein properties are converted to ligand space, and pharmacophore features are generated at positions where protein ligand interactions are likely. Using this semiautomated knowledge-driven bioinformatics approach we have created pharmacophore hypotheses for 15 different GPCRs from several different subfamilies. For the beta-2-adrenergic receptor we show that ligand poses predicted by Snooker pharmacophore hypotheses reproduce literature supported binding modes for ~75% of compounds fulfilling pharmacophore constraints. All 15 pharmacophore hypotheses represent interactions with essential residues for ligand binding as observed in mutagenesis experiments and compound selections based on these hypotheses are shown to be target specific. For 8 out of 15 targets enrichment factors above 10-fold are observed in the top 0.5% ranked compounds in a virtual screen. Additionally, prospectively predicted ligand binding poses in the human dopamine D3 receptor based on Snooker pharmacophores were ranked among the best models in the community wide GPCR dock 2010.  相似文献   

3.
The hemagglutinin (HA) protein of the influenza virus binds to the host cell receptor in the early stage of viral infection. A change in binding specificity from avian 2-3 to human 2-6 receptor is essential for optimal human-to-human transmission and pandemics. Therefore, it is important to reveal the key factors governing the binding affinity of HA-receptor complex at the molecular level for the understanding and prediction of influenza pandemics. In this work, on the basis of ab initio fragment molecular orbital (FMO) method, we have carried out the interaction energy analysis of HA-receptor complexes to quantitatively elucidate the binding specificity of HAs to avian and human receptors. To discuss the binding property of influenza HA comprehensively, a number of HAs from human H1, swine H1, avian H3 and avian H5 viruses were analyzed. We performed detailed investigations about the interaction patterns of complexes of various HAs and receptor analogues, and revealed that intra-molecular interactions between conserved residues in HA play an important role for HA-receptor binding. These results may provide a hint to understand the role of conserved acidic residues at the receptor binding site which are destabilized by the electrostatic repulsion with sialic acid. The calculated binding energies and interaction patterns between receptor and HAs are consistent with the binding specificities of each HA and thus explain the receptor binding mechanism. The calculated results in the present analysis have provided a number of viewpoints regarding the models for the HA-receptor binding specificity associated with mutated residues. Examples include the role of Glu190 and Gln226 for the binding specificity of H5 HA. Since H5 HA has not yet been adapted to human receptor and the mechanism of the specificity change is unknown, this result is helpful for the prediction of the change in receptor specificity associated with forthcoming possible pandemics.  相似文献   

4.
A growing number of approaches to “staple” α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here, the replacement of l -cysteine with “cysteine analogues” in combinations of different stereochemistry, side chain length and beta-carbon substitution, is explored to examine the influence that the thiol-containing residue(s) has on target protein binding affinity in a well-explored model system, p53–MDM2/MDMX, which is constituted by the interaction of the tumour suppressor protein p53 and proteins MDM2 and MDMX, which regulate p53 activity. In some cases, replacement of one or more l -cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide. Computationally constructed homology models indicate that some modifications, such as incorporating two d -cysteine residues, favourably alter the positions of key functional amino acid side chains, which is likely to cause changes in binding affinity, in agreement with measured surface plasmon resonance data.  相似文献   

5.
Somatotropin, commonly known as growth hormone (GH) is a polypeptide chain containing about 190 amino acid residues, produced by the pituitary gland in mammals and is responsible for a number of anabolic processes. It has two disulphide bridges, with 4 alpha helices arranged in anti-parallel distinctive manner. GH molecule binds with two receptor molecules to exhibit its full biological activity. In this review, the information regarding characterization, structure and function is updated. A number of human growth hormone variants (naturally occurring and produced by recombinant DNA- technology) are visualised, and structure related functions are revealed. 1) The di-sulphide bridges are not essential for the biological activity of the molecule. The two chain variants of GH are able to show full biological activity. 2) The different domains of GH could be related to its functions 3) N-terminus of the molecule is involved in the galactopoietic activity of the molecule. 4) A single amino acid residue at a particular position could determine the magnitude of hormone receptor binding. 5) Role of Trp 86 is critical in packing of the apha helices bundles of the molecule. 6) Hydrophobic cores are essential for the stability of GH molecule 7) Salt bridges and hydrogen bonds are also important for the binding of the molecule with its receptors. 8) GH molecule has two binding sites for receptor molecules, Site I and Site II which are sterically coupled. The placental growth hormone has also been discussed and compared with the pituitary derived GH for its structure and function.  相似文献   

6.
《Chemical physics》1986,108(2):233-241
The densities of states (DOS) of 4- and 5-component aperiodic polypeptide chains with 300 units are calculated on the ab initio level using the negative factor counting approach. The amino acid residues were glycine, serine, cysteine, asparagine and histidine. The localization of the wavefunctions belonging to the lowest lying energy levels in the conduction band region are investigated and hopping probabilities are calculated. On the basis of these results the possibility for hopping conduction in proteins is discussed under the assumption of charge transfer from DNA to the peptide chain.  相似文献   

7.
8.
The rate of spontaneous degradations of asparagine and aspartyl residues occurring through succinimide intermediates is dependent upon the nature of the residue on the carboxyl side in peptides. For nonglycine residues, we show here that this effect can largely be attributed to the electrostatic/inductive effect of the side chain group on the equilibrium concentration of the anionic form of the peptide bond nitrogen atom that initiates the succinimide forming reaction. However, the rate of degradation of Asn-Gly and Asp-Gly containing peptides is about an order of magnitude greater than predicted solely using this explanation. To understand the nature of the glycine effect, ab initio calculations were performed on model compounds. These calculations indicate that there is little to no change in the stability of the transition state or the tetrahedral intermediate of succinimide formation with Asn-/Asp-Gly and Asn-/Asp-Ala derivatives. However, we have found that the acidity of the backbone peptide nitrogen NH is highly dependent upon the conformation of the molecule. Since glycine residues lack the beta-carbon common to all other protein amino acids, these residues can sample additional regions of conformational space where it is possible to further stabilize the backbone amide anion and thus increase the rate of degradation. These results provide the first rationale for the particular rate enhancement of degradation in peptidyl Asn-/Asp-Gly sequences. The results also can be applied to asparagine and aspartyl residues in proteins where the 3-dimensional structure provides additional constraints on conformation that can either increase or decrease the equilibrium concentration of the backbone amide anion and thus their rate of degradation via succinimide intermediates. Understanding this chemistry will assist attempts to minimize the deleterious effect of aging at the molecular level. The relationship between these results and proton exchange experiments is discussed in the Appendix.  相似文献   

9.
An ab initio method has been developed to predict helix formation for polypeptides. The approach relies on the systematic analysis of overlapping oligopeptides to determine the helical propensity for individual residues. Detailed atomistic level modeling, including entropic contributions, and solvation/ionization energies calculated through the solution of the Poisson-Boltzmann equation, is utilized. The calculation of probabilities for helix formation is based on the generation of ensembles of low energy conformers. The approach, which is easily amenable to parallelization, is shown to perform very well for several benchmark polypeptide systems, including the bovine pancreatic trypsin inhibitor, the immunoglobulin binding domain of protein G, the chymotrypsin inhibitor 2, the R69 N-terminal domain of phage 434 repressor, and the wheat germ agglutinin.  相似文献   

10.
Introduction: WW domains are small protein interaction modules found in a wide range of eukaryotic signaling and structural proteins. Five classes of WW domains have been annotated to date, where each class is largely defined by the type of peptide ligand selected, rather than by similarities within WW domains. Class I WW domains bind Pro-Pro-Xxx-Tyr containing ligands, and it would be of interest to determine residues within the domains that determine this specificity.Results: Fourteen WW domains selected Leu/Pro-Pro-Xxx-Tyr containing peptides ligands via phage display and were thus designated as Class 1 WW domains. These domains include those present in human YAP (hYAP) and WWP3, as well as those found in ubiquitin protein ligases of the Nedd4 family, including mouse Nedd4 (mNedd4), WWP1, WWP2 and Rsp5. Comparing the primary structures of these WW domains highlighted a set of highly conserved residues, in addition to those originally noted to occur within WW domains. Substitutions at two of these conserved positions completely inhibited ligand binding, whereas substitution at a non-conserved position did not. Moreover, mutant WW domains containing substitutions at conserved positions bound novel peptide ligands.Conclusions: Class I WW domains contain a highly conserved set of residues that are important in selecting Pro-Xxx-Tyr containing peptide ligands. The presence of these residues within an uncharacterized WW domain can be used to predict its ability to bind Pro-Xxx-Tyr containing peptide ligands.  相似文献   

11.
Raman and Raman optical activity (ROA) spectra of poly-L-proline were recorded in a wide frequency range and analyzed with respect to the proline side chain conformation. The analysis was based on comparison to ab initio simulations of spectral band positions and intensities. The presence of two conformer states of the five-member ring was found, approximately equally populated in the polypeptide. Additionally, Raman and ROA spectral shapes indicated that the peptide adopts the polyproline II helical conformation, in both aqueous and TFE solutions. The helix, however, is perturbed by fluctuations, which affects the vibrational coupling among amino acid residues and broadens the ROA bands. Contributions of the side and main peptide chains to the polyproline ROA intensities have comparable magnitudes. Thus understanding of the origins of both signals is important for determination of the peptide structure by ROA.  相似文献   

12.
We have recently developed a new class of one-armed artificial receptors 1 for the binding of the polar tetrapeptide N-Ac-D-Glu-L-Lys-D-Ala-D-Ala-OH (EKAA) 2 in water using a combined combinatorial and statistical approach. We have now further probed the substrate selectivity of this receptor library 1 by screening a second tetrapeptide substrate (3) with the inverse sequence N-Ac-D-Ala-D-Ala-L-Lys-D-Glu-OH (AAKE). This "inverse" substrate is also efficiently bound by our receptors, with K(ass) approximately 6000 M(-1) for the best receptors, as determined both by a quantitative on-bead binding assay and by UV and fluorescence titration studies in free solution. Hence, the inverse tetrapeptide 3 is in general bound two to three times less efficiently than the "normal" peptide 2 (K(ass) approximately 17,000 M(-1)), even though the complexation mainly involves long-range electrostatic interactions and both the receptor and substrate are rather flexible. Molecular modeling and ab initio calculations have been used to rationalize the observed substrate selectivity and to analyze the various binding interactions within the complex.  相似文献   

13.
Here, we describe a family of methods based on residue–residue connectivity for characterizing binding sites and apply variants of the method to various types of protein–ligand complexes including proteases, allosteric‐binding sites, correctly and incorrectly docked poses, and inhibitors of protein–protein interactions. Residues within ligand‐binding sites have about 25% more contact neighbors than surface residues in general; high‐connectivity residues are found in contact with the ligand in 84% of all complexes studied. In addition, a k‐means algorithm was developed that may be useful for identifying potential binding sites with no obvious geometric or connectivity features. The analysis was primarily carried out on 61 protein–ligand structures from the MEROPS protease database, 250 protein–ligand structures from the PDBSelect (25%), and 30 protein–protein complexes. Analysis of four proteases with crystal structures for multiple bound ligands has shown that residues with high connectivity tend to have less variable side‐chain conformation. The relevance to drug design is discussed in terms of identifying allosteric‐binding sites, distinguishing between alternative docked poses and designing protein interface inhibitors. Taken together, this data indicate that residue–residue connectivity is highly relevant to medicinal chemistry. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
We report full ab initio Hartree-Fock calculation to compute quantum mechanical interaction energies for beta-trypsin/benzamidine binding complex. In this study, the full quantum mechanical ab initio energy calculation for the entire protein complex with 3238 atoms is made possible by using a recently developed MFCC (molecular fractionation with conjugate caps) approach in which the protein molecule is decomposed into amino acid-based fragments that are properly capped. The present MFCC ab initio calculation enables us to obtain an "interaction spectrum" that provides detailed quantitative information on protein-ligand binding at the amino acid levels. These detailed information on individual residue-ligand interaction gives a quantitative molecular insight into our understanding of protein-ligand binding and provides a guidance to rational design of potential inhibitors of protein targets.  相似文献   

15.
《Chemistry & biology》1996,3(11):913-921
Background: A structurally diverse group of bioactive peptides is synthesized by peptide synthetases which act as templates for a growing peptide chain, attached to the enzyme via a thloester bond. The protein templates are composed of distinctive substrate-activating modules, whose order dictates the primary structure of the corresponding peptide product. Each module contains defined domains that catalyze adenylation, thioester and peptide bond formation, as well as substrate modifications. To show that a putative thiolation domain (PCP) is involved in covalent binding and transfer of amino aryl residues during non-ribosomal peptide synthesis, we have cloned and biochemically characterized that region of tyrocidine synthetase 1, TycA.Results: The 327-bp gene fragment encoding PCP was cloned using its homology to the genes for the acyl carrier proteins of fatty acid and polyketide biosynthesis. The protein was expressed as a His6, fusion protein, and purified in a single step by affinity chromatography. Incorporation of β-[3H]alanine, a precursor of coenzyme A, demonstrated the modification of PCP with the cofactor 4′-phosphopantetheine. When an adenylation domain is present to supply the amino adenylate moiety, PCP can be acylated in vitro.Conclusions: PCP can bind covalently to the cofactor phosphopantetheine and can subsequently be acylated, strongly supporting the multiple carrier model of non-ribosomal peptide synthesis. The adenylation and thiolation domains can each act as independent multifunctional enzymes, further confirming the modular structure of peptide synthees, and can also perform sequential steps in trans, as do multienzyme complexes.  相似文献   

16.
A number of sequence-based analyses have been developed to identify protein segments, which are able to form membrane interactive amphiphilic alpha-helices. Earlier techniques attempted to detect the characteristic periodicity in hydrophobic amino acid residues shown by these structure and included the Molecular Hydrophobic Potential (MHP), which represents the hydrophobicity of amino acid residues as lines of isopotential around the alpha-helix and analyses based on Fourier transforms. These latter analyses compare the periodicity of hydrophobic residues in a putative alpha-helical sequence with that of a test mathematical function to provide a measure of amphiphilicity using either the Amphipathic Index or the Hydrophobic Moment. More recently, the introduction of computational procedures based on techniques such as hydropathy analysis, homology modelling, multiple sequence alignments and neural networks has led to the prediction of transmembrane alpha-helices with accuracies of the order of 95% and transmembrane protein topology with accuracies greater than 75%. Statistical approaches to transmembrane protein modeling such as hidden Markov models have increased these prediction levels to an even higher level. Here, we review a number of these predictive techniques and consider problems associated with their use in the prediction of structure / function relationships, using alpha-helices from G-coupled protein receptors, penicillin binding proteins, apolipoproteins, peptide hormones, lytic peptides and tilted peptides as examples.  相似文献   

17.
18.
A naturally occurring beta-hairpin peptide (PDB ID 1UAO) was used as a model to study the backbone oxidation of a protein with ab initio calculation at the B3LYB/6-31G(d) without any constraints. The (alpha)C--H bond dissociation energy of three different glycyl radicals located at different sites on the beta-hairpin peptide was calculated to evaluate the site specificity of backbone oxidation. The molecular and electronic structures of these glycyl radicals were analyzed to rationalize this site specificity. The overall molecular structure of the alpha-H abstracted beta-hairpin peptide remained almost unchanged with the exception of the local conformation of the attacked residue. However, the (alpha)C--H bond strength varied dramatically among these different sites.  相似文献   

19.
Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and unbound forms. These simulations suggested that a combination of the α-helical propensity of the unbound peptide and specific interactions between the peptide and the receptor extracellular domain contribute to their higher binding affinities.  相似文献   

20.
Peptidylglycine alpha-amidating monooxygenase catalyzes the biosynthesis of peptide hormones through radical cleavage of the C-terminal glycine residues of the corresponding prohormones. We have correlated ab initio calculations of radical stabilization energies and studies of free radical brominations with the extent of catalysis displayed by peptidylglycine alpha-amidating monooxygenase, to identify classes of inhibitors of the enzyme. In particular we find that, in closely related systems, the substitution of glycolate for glycine reduces the calculated radical stabilization energy by 34.7 kJ mol(-1), decreases the rate of bromination with N-bromosuccinimide at reflux in carbon tetrachloride by a factor of at least 2000, and stops catalysis by the monooxygenase, while maintaining binding to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号