首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
We extend the lubrication approximation for a viscous flow in two-dimensional channels with arbitrary shape functions and moderate aspect ratio. The higher-order model is obtained following an asymptotic analysis. Velocity and pressure profiles for the approximated model are given analytically and involve the derivatives of the shape functions of the walls up to the second order. Comparisons with full-scale simulations are given and show good agreement as well as improvements from the classical standard lubrication approximation.  相似文献   

2.
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120°down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokes‘s formula, F^2μπ= tanμπ, relating the wave speed (the Froude number F) and the logarithmic decremen t# of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokes‘s basic term (singular in #), such that 2Mμ is just somewhat beyond unity, i.e. 2Mμ≌ 1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio α= a/h, especially about α≌0.01, at which M = 10by the criterion.In this pursuit, the class of dwarf solitary waves, defined for waves with ≌≤ 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height αhst = 0.8331990, and speed Fhst = 1.290890, accurate to the last significant figure, which seems to be a new record.  相似文献   

3.
In the context of wave propagation through a three-dimensional acoustic medium, an analytical approach to estimate the boundary effects in the high-frequency (single) diffraction by thin rigid obstacles is developed. Starting from the classical Kirchhoff (approximate) representation, explicit formulas regarding three sample cases are obtained. The improvement with respect to previous approaches, usually based on refinements of the classical Ray Theory, is evaluated by comparison with the results from a direct numerical solution of the main integrals involved.  相似文献   

4.
Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is devel-oped to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implemen-tation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.  相似文献   

5.
In this paper, we present a non-linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods. A dimensional analysis of the non-linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure and the level of applied forces. For a given force level, the order of magnitude of the displacements and the corresponding one-dimensional model are deduced by asymptotic expansions.  相似文献   

6.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
A Chebyshev collocation method for solving the unsteady two-dimensional Navier–Stokes equations in vorticity–streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier–Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.  相似文献   

8.
In this paper, using asymptotic analysis, we study the lubrication process with incompressible micropolar fluid. Starting from 3D micropolar equations, we derive the higher-order asymptotic model explicitly acknowledging the microstructure effects. The effective equations are similar to the Brinkman model for porous medium flow.  相似文献   

9.
A finite element method for the transient incompressible Navier–Stokes equations with the ability to handle multiple free boundaries is presented. Problems of liquid–liquid type are treated by solving two coupled Navier–Stokes problems for two separate phases. The possibility to solve problems of liquid–gas, liquid–liquid–gas or liquid–liquid–liquid type is demonstrated too. Surface tension effects are included at deformable interfaces. The method is of Lagrangian type with mesh redefinition. A predictor-corrector scheme is used to compute the position of the deformable interface with automatic control of its accuracy and smoothness. The method is provided with an automatic choice of the time integration step and an optional spline filtration of the truncation error at the free surface. In order to show the accuracy of the method, tests and comparisons are presented. Numerical examples include motion of bubbles and multiple drops.  相似文献   

10.
基体开裂、纤维拔出、界面剥离等是碳纤维增强复合材料常出现的局部各向异性损伤现象,这些损伤逐渐扩展,削弱了材料的强度和刚度,影响材料的承载能力.对此利用宏微观摄动理论对位移进行双范围渐进展开,在微观位移中引入损伤应变,通过计算损伤应变集中因子,得到了含损伤的均质化损伤弹性常数(宏观有效刚度矩阵),用平均法和混合法检验了无...  相似文献   

11.
An efficient solution strategy for the simulation of incompressible fluids needs adequate and accurate space and time discretization schemes. In this paper, for the space discretization, we use an inf–sup stable finite element method and for the time discretization, Radau‐IIA methods of higher order, which have the advantage that the pressure component has convergence order s in time, where s is the number of internal stages. The disadvantage of this approach is that we have a high computational amount of work, because large nonlinear systems of equations have to solved. In this paper, we use a transformation of the coefficient matrix and the simplified Newton method. This approach has the effect that our large nonlinear systems split into smaller ones, which can now also be solved in parallel. For the parallelization of the code we use the software component technology and the Component Template Library. Numerical examples show that high order in the pressure component can be achieved and that the proposed solution technique is very effective. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
An efficient 2D non-linear numerical wave tank called LONGTANK has been developed based on a multi-subdomain (MSD) approach combined with the conventional boundary element method (BEM). The multi-subdomain approach aims at optimized matrix diagonalization, thus minimizing the computing time and reserved storage. The CPU per time step in LONGTANK simulation is found to increase only linearly with the number of surface nodes, which makes LONGTANK highly efficient especially when simulating long-time wave evolutions in space. Appropriate treatment of special points on the boundary ensures high resolution in LONGTANK simulation beyond initial deformation and breaking, which allows detailed study of breaking criterion, breaker morphology, breaking dissipation, vorticity generation, etc. Detailed numerical implementation has been given with demonstration of LONGTANK simulations.  相似文献   

13.
A new finite element technique has been developed for employing integral-type constitutive equations in non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent predictor-corrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The important question of mesh refinement and convergence for integral models in complex flow at high flow rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels without numerical instability, compared with the best available similar calculations in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号