首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以膨胀石墨为原料,采用不同溶剂,通过液相超声直接剥离法制备多层石墨烯,利用透射电子显微镜、原子力学显微镜对其形貌进行了表征,在多功能往复摩擦磨损试验仪上研究了石墨烯石蜡分散体系的摩擦学性能。通过扫描电镜、能谱仪分析了磨痕形貌及表面元素组成。结果表明:多层石墨烯作为液体石蜡添加剂表现出良好的减摩抗磨性能,主要是因为多层石墨烯在磨损表面形成的物理吸附膜与摩擦化学反应膜的共同作用。  相似文献   

2.
以膨胀石墨为原料,采用不同溶剂,通过液相超声直接剥离法制备多层石墨烯,利用透射电子显微镜、原子力学显微镜对其形貌进行了表征,在多功能往复摩擦磨损试验仪上研究了石墨烯石蜡分散体系的摩擦学性能。通过扫描电镜、能谱仪分析了磨痕形貌及表面元素组成。结果表明:多层石墨烯作为液体石蜡添加剂表现出良好的减摩抗磨性能,主要是因为多层石墨烯在磨损表面形成的物理吸附膜与摩擦化学反应膜的共同作用。  相似文献   

3.
Graphene oxide (GO) and reduced graphene oxide (CRGO), as a graphene derivatives, possess unique properties and a high aspect ratio, indicating great potential in nanocomposite fields. The present work reports the fabrication of the nanocomposite films by a simple and environmentally friendly process using aqueous solution and optimized time sonication for better exfoliation of the graphene sheets within Poly(Vinyl alcohol) (PVA) as matrix. The films were characterized using high-resolution TEM (HRTEM), X-ray diffraction (XRD), Microtensile testing, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The TEM images revealed a successfully exfoliation of the GO/CRGO nanosheets. XRD combined with TGA and DSC measurements showed an improvement in the thermal stability and tunable thermal properties. In addition, the Young's modulus and tensile yield strength of the composite films containing 1 wt% GO were obtained to be 4.92 GPa and 66 MPa respectively. These excellent reinforcement effects were achieved by the strong interaction between the components.  相似文献   

4.
ABSTRACT

The rapid development of telecommunication devices and related technologies improved the distribution of electromagnetic (EM) waves within the environment, which can adversely affect the performance of electronic systems and put the life of living species in serious danger; thus, practical alternatives are required to protect vulnerable sources from them. To address this demand, we developed reinforced composites with graphene oxide (GO)-lead oxide (GO-Pb3O4) hybrid 2D nanosheets at diverse filler loadings by employing the vacuum shock technique. Next, the developed fillers and composites were well characterized by the diverse analysis methods and their electromagnetic interference shielding effectiveness (EMI SE) was evaluated and compared with their X-ray shielding performance. The obtained results showed that the developed composites can perfectly attenuate X-ray waves and weaken the total power of applied EM waves (in X-band frequency (8.2–12.4 GHz)) more than 50%. In this regard, a 6 mm thick specimen containing 10?wt% GO-Pb3O4 attenuated emitted X-ray waves equal to 4.06, 4.83 and 3.91?mmAl at 40, 60 and 80?kVp energies, which shows about 124%, 124% and 121% increase, respectively, in the X-ray attenuation compared with neat epoxy resin. These results indicated that developed composites are perfect candidates to protect vulnerable sources from diverse EM sources, and despite the insulative nature of the GO-Pb3O4, these hybrid nanosheets can act as a potential barrier against EM waves.  相似文献   

5.
6.
Hydration is a critical step that determines the performance of cement-based materials. In this paper, the effect of GO on the hydration of cement was evaluated by XRD and FTIR. It was found that GO can remarkably accelerate the hydration rate of cement due to its catalytic behavior. This happened because the oxygen-containing functional groups of GO provide adsorption sites for both water molecules and cement components.  相似文献   

7.
采用紧束缚近似方法,研究了三角形锯齿型石墨烯纳米片(Triangular zigzag graphene nanosheets, TZGN)的电子结构.研究表明单孔TZGN结构的零能级都是外边缘态,跟孔的大小没有关系.多孔TZGN结构受孔间结构的影响,零能级会随着孔数目的增加逐渐出现内外边缘耦合态,导带和价带能级个数也会随着孔的大小和孔的数量的增加而减少.研究结果拓宽了石墨烯纳米结构在纳机电器件方面的应用.  相似文献   

8.
Ionics - A ferrocene-derivative compound, 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one (2,7-BFE), was synthesized and used to construct a modified graphene paste electrode. The electrooxidation of...  相似文献   

9.
This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.  相似文献   

10.
Graphene-based materials exhibit unique properties that have been sought to utilize for various potential applications. Many studies suggest that graphene-based materials can be cytotoxic, which may be attributed to destructive effects on cell membranes.However, there still are conflicting results regarding interactions between graphene-based materials and lipid membranes. Here,through cryo-electron microscopy(Cryo-EM) and dye-leakage experiments along with in silico methods, we found that graphene oxide nanosheets induce significant membrane damage, while the effect of pristine graphene is negligible. We revealed the importance of heterogeneous oxidization of graphene-based nanosheets in damaging vesicle membranes. Moreover, that not only the oxidization degree but also the oxidization loci and membrane tension play important roles in the cytotoxicity of the graphene-based nanosheets.  相似文献   

11.
Nitrogen-doped graphene nanosheet (N-SEGN) with pyrrolic nitrogen and 5-9 vacancy defects has been successfully prepared from a hydrothermal reaction of tetra-2-pyridinylpyrazine and sonoelectrochemistry-exfoliated graphene nanosheet, with point defects. Additionally, based on the same reaction using chemically reduced graphene oxide, nitrogen-doped chemically reduced graphene oxide (N-rGO) with graphitic nitrogen was prepared. The N-SEGN and N-rGO were used as a non-enzymatic H2O2 sensors. The sensitivity of the N-SEGN was 231.3 μA·mM−1·cm−2, much greater than 57.3 μA·mM−1·cm−2 of N-rGO. The N-SEGN showed their potential for being a H2O2 sensor.  相似文献   

12.
Defective graphene nanosheets (dGN4V) with 5-9, 5-8-5, and point defects were synthesised by a sonoelectrochemical method, where a potential of 4 V (vs. Ag/AgCl) was applied to drive the rapid intercalation of phosphate ions between the layers of the graphite foil as a working electrode. In addition to these vacancies, double vacancy defects were also created when the applied potential was increased to 8 V (dGN8V). The defect density of dGN8V (2406 μm−2) was higher than that of dGN4V (1786 μm−2). Additionally, dGN8V and dGN4V were applied as catalysts for the hydrogen peroxide reduction reaction (HPRR). The mass activity of dGN8V (1.31 × 10−2 mA·μg−1) was greater than that of dGN4V (1.17 × 10−2 mA·μg−1) because of its high electrochemical surface area (ECSA, 1250.89 m2·g−1) and defect density (ND, 2406 μm−2), leading to low charge transfer resistance on the electrocatalytic interface. The ECSA and ND of dGN4V were 502.7 m2·g−1 and 1786 μm−2, respectively. Apart from its remarkable HPRR activity, the cost-effective dGN8V catalyst also showed potential as an amperometric sensor for the determination of H2O2.  相似文献   

13.
Surface restoration induced by lubricant additive of natural minerals   总被引:5,自引:0,他引:5  
The effect of a new-fashioned lubricant additive is studied. The additive is prepared out of natural minerals containing flaky silicate, schungite and some other catalyzers. Applications of the additive obviously improve the surface mechanics properties of steel-steel friction pairs, and the nanohardness and the modulus of the friction surface are increased by 67 and 90%, respectively. The friction surface is especially examined with the high resolution transmission electron microscope (HRTEM), and an amorphous restoration film mostly made up of C with some Si or Si-O amorphous structure doped was found. Considering all research results about the restoration film, this study suggests the film is a sort of diamond-like carbon film (DLC film).  相似文献   

14.
Two dimensional (2D) Pd nanosheets supported on reduced graphene oxide (Pd/rGO) were prepared through a sonochemical routine induced by cetyltrimethylammonium bromide (CTAB). Coral-like porous Pd nanosheets (Pd/rGO-u) were obtained under the sonication condition (25 kHz, 600 W, ultrasonic transducer), while square Pd nanosheets (Pd/rGO-c) were produced via traditional chemical reduction. The size of Pd nanosheets of Pd/rGO-u and Pd/rGO-c are 69.7 nm and 59.7 nm, and the thickness are 4.6 nm and 4.4 nm, respectively. The carrier GO was proved to be partially reduced to rGO with good electrical conductivity and oxygen-containing groups facilitated a good dispersion of Pd nanosheets. The interaction between GO and CTAB made the alkyl chain assembles to a 2D lamella micelles which limit the growth of Pd atoms resulting in the formation of 2D nanosheets. A high ultrasonic power promotes the reduction and the formation of porous structure. Additionally, Pd/rGO-u exhibited a favorable electrocatalytic performance toward oxygen reduction reaction (ORR) in alkaline condition, which provided a potential synthetic strategy assisted by sonication for high-performance 2D materials.  相似文献   

15.
We report catalyst‐free direct synthesis of vertical graphene nanosheets (VGNs) on SiO2/Si and quartz substrates using microwave electron cyclotron resonance – plasma enhanced chemical vapor deposition. The evolution of VGNs is studied systematically at different growth stages. Raman analysis as a function of growth time reveals that two different disorder‐induced competing mechanisms contributing to the defect band intensity. The VGNs grown on SiO2/Si substrates predominantly consists of both vacancy‐like and hopping defects. On the other hand, the VGNs grown on quartz substrates contain mainly boundary‐like defects. X‐ray photoemission spectroscopy studies also corroborate Raman analysis in terms of defect density and vacancy‐like defects for the VGNs grown on SiO2/Si substrates. Moreover, the grown VGNs exhibit a high optical transmittance from 95% to 78% at 550 nm and the sheet resistance varies from 30 to 2.17 kΩ/sq. depending on growth time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Reduced graphene oxide (RGO) particles were obtained from natural and artificial graphite using chemical reduction. The particles were placed on an aqueous subphase surface in a Langmuir trough from suspensions in carbon tetrachloride. Compression isotherms of layers of RGO particles were obtained for different amounts of the substance deposited on the subphase. Layers on the aqueous subphase surface were studied using a Brewster microscope and measurements of the surface potential. Comparison of the obtained data made it possible to determine the stage of the formation of a continuous RGO layer.  相似文献   

18.
《Physics letters. A》2019,383(18):2193-2200
We study magnetic field control of current through model graphene nanosheet junctions within the framework of the tight-binding approximation. Geometrical asymmetry in the coupling of graphene nanosheets to the contact leads emerges as one of the most important determining factors for the magnetic field control of current. The asymmetric connection split the otherwise degenerate energy levels of the structures leading to energy-resolved transmission peaks which the applied field modulates for a transmission maximum by narrowing the energy gap between the split energy levels. Also, the contact coupling strength plays a decisive role in controlling current in small structures, while its role is significantly less in large structures that have more closely-spaced energy levels. Model calculations on a graphene nanosheet junction with inter-site Coulomb interaction is found to sustain sensitivity to the applied magnetic field. Although several factors bear direct effect on the electron transport through molecular junctions, suitably constructed graphene nanosheet junctions would greatly enhance the prospects of current control under applied magnetic fields.  相似文献   

19.
The electrical conductivity of graphene oxide (GO) films in vapors of water and acid solutions is found to be close to the conductivity of a film formed after drying the solution of phenol-2,4-disulfonic acid in polyvinyl alcohol, which is known to be a proton conductor. We found that the conductivity of a GO film in vapors of the H2O–H2SO4 electrolyte possesses a sharp maximum at ~1 % by weight of sulfuric acid. The highest conductivity of GO films can be expected when placing the films over acid vapors where the acid concentration is essentially lower than in the acid solutions at their maximum conductivity. Since the conductivity of the H2O–H2SO4 electrolyte itself has a maximum at ~30 % by weight of sulfuric acid, the use of intermediate concentrations of H2SO4 is recommended in practical applications. The GO films permeated with water or acid solution in water are expected to possess the proton-exchange properties similar to those of other proton-exchanging membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号