首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the preparation of planar 15-layer dielectric mirrors by a thermal evaporation of alternating high refractive index contrast amorphous chalcogenide Sb-Se and Ge-S layers, exhibiting a high-reflection band around 1.55 μm. The layer deposition quality and the thickness accuracy of such prepared chalcogenide multilayers were then checked using transmission electron microscopy. The layer thickness deviation of chalcogenide layers did not exceed ∼7 nm in comparison with the desired thicknesses. The width of Sb-Se/Ge-S layer boundary was approximately ∼3 nm, which is in good agreement with the surface roughness values of thermally evaporated Sb-Se and Ge-S single layers. The optical properties of the prepared 15-layer dielectric mirrors were consistent in temperature range of 20-120 °C; however, at higher temperatures there started apparent structural changes of Sb-Se films, which were followed by their crystallization. Excellent optical properties of chalcogenide materials in the infrared range make them interesting for applications, e.g., in optics and photonics.  相似文献   

2.
The influence of annealing conditions on the properties of reinforced silver-embedded silica matrix was systematically investigated in the present study. The samples were prepared via a recently reported method using sodium silicate as a silica precursor. Aluminium ions were used to reinforce and improve the chemical durability of silver-embedded silica; and the mole ratio of the precursors was fixed at Al/Ag = 1. The properties of the final product were examined in relation to its counterparts; namely pure silica, aluminium-embedded silica (without silver), and silver doped silica (without aluminium). The materials were heat treated at the range of 600-1000 °C under the constant supply of argon (inert atmosphere). The properties of the final product were compared with those of the previously reported materials prepared via the same method but calcined in air. The current material was found to have pure silver nanoparticles (without AgCl nanoparticles) while the previous material had both silver and AgCl nanoparticles. The results demonstrate that materials with more desirable properties can be obtained by this newly developed technique while utilizing sodium silicate, which is relatively cheap, as a silica precursor. This may significantly boost the industrial production of the silver-embedded silicas for various applications.  相似文献   

3.
Novel UV curable waterborne polyurethane coatings (UVWPU) modified by melamine was prepared using isophorone diisocyanate (IPDI), polyethylene glycol (PEG), α,α-dimethylol propionic acid (DMPA), hydroxyethyl acrylate (HEA) as main materials. Copolymer structure was verified using Fourier transform infrared spectroscopy (FT-IR). Performance of the coatings was evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), and mechanical tests such as pencil hardness and resistance to water. The results showed that the modified UVWPU film had the good thermal resistance, water resistance and mechanical properties. The optimum melamine dosage was 4.70 wt.%, the glass transition temperature (Tg) of the modified film increased by 20.4 °C and 5% weight-loss temperature (253 °C) increased by 105 °C. No change color, crinkle, desquamate, dehisce and frothy were found after the modified film dried at 130 °C for 2 h.  相似文献   

4.
Effect of citric acid (CA) on microstructure and photoelectrochemical properties of WO3 films prepared by the polymeric precursor method was investigated. The obtained materials were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The results showed that samples prepared with adding different amounts of citric acid had a pure phase of cubic. The addition of citric acid could significantly increase the particle size and change the surface of WO3 films. The photoelectrochemical measurements were performed using a standard three-electrode system cell. The films prepared from mass ratios of CA/PEG (R = 0, 0.2, 0.4, 0.6 and 1) showed 1.0, 1.4, 1.7, 2.1 and 0.9 mA cm−2 at 1.2 V under illumination with a 500 W xenon lamp (I0 = 100 mW/cm2), respectively.  相似文献   

5.
Antimony-doped tin oxide (SnO2:Sb) single crystalline films have been prepared on α-Al2O3 (0 0 0 1) substrates by metal organic chemical vapor deposition (MOCVD). The antimony doping was varied from 2% to 7% (atomic ratio). Post-deposition annealing of the SnO2:Sb films was carried out at 700-1100 °C for 30 min in atmosphere ambient. The effect of annealing on the structural, electrical and optical properties of the films was investigated in detail. All the SnO2:Sb films had good thermal stability under 900 °C, and the 5% Sb-doped SnO2 film exhibited the best opto-electrical properties. Annealed above 900 °C, the 7% Sb-doped SnO2 film still kept high thermal stability and showed good electrical and optical properties even at 1100 °C.  相似文献   

6.
LiMnO2 and 0.23Li2MnO3·0.77LiMnO2 were prepared by a convenient one-step solid-state reaction from MnO2 using glucose as organic carbon resource. The crystal structure and morphology of the as-prepared materials was examined by X-ray powder diffraction and field emission scanning electron microscopy, respectively. The ration of Li to Mn was determined by means of atomic absorption spectrometry and the Li/Mn molar ratio in the products was 1.23. The electrochemical properties were investigated by charge-discharge test and electrochemical impedance measurements. The prepared composite material presented an initial discharge capacity of 45 mAh g-1 and a good cycling performance with reversible capacity of 218 mAh g-1 after 30 cycles. On the basis of the experimental results, the discharge efficiency of this composite material more than 100% was also discussed.  相似文献   

7.
Tungsten oxide (WO3) thin films have been extensively studied for their interesting physical properties and a variety of potential applications in electrochromic devices. In order to explore the possibility of using these in electrochromic devices, a preliminary and thorough study of the optical properties of the host materials is an important step. Based on this, the influence of annealing temperature on the structural, surface morphological, optical and electrochromic properties has been investigated in the present work. The host material, WO3 films, has been prepared from an ethanolic acetylated peroxotungstic acid sol containing 5 wt.% oxalic acid dehydrate (OAD) by sol-gel technique. The monoclinic structure and textured nature change of the films with the temperature increasing have been investigated by X-ray diffraction analysis. The surface morphology evolution of the films has been characterized by SEM. The shift in absorption edge towards the higher wavelength region observed from optical studies may be due to the electron scattering effects and the optical band filling effect that reveals the crystallization of the film. The amorphous film shows better optical modulation (ΔT = 76.9% at λ = 610 nm), fast color-bleach kinetics (tc ∼ 4 s and tb ∼ 9 s) and good reversibility (Qb/Qc = 90%), thereby rendering it suitable for smart window applications.  相似文献   

8.
Fe/graphite oxide nanocomposites were prepared by inserting Fe3+ into layers of graphite oxide and then reducing Fe3+/graphite oxide compound at different reduced reaction temperatures in H2. The composition, crystal structure, magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites were investigated using elemental analysis, transmission electron microscope (TEM), X-ray diffraction (XRD), magnetic hysteresis curve and electromagnetic parameter analysis. The results show that the densities of samples are 2.43–2.47 g/cm3 and the nanocomposites are soft magnetic materials. The optimum reduced reaction temperature for preparing Fe/graphite oxide nanocomposites is 600 °C. With the increase of the thickness of the sample, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. Microwave absorption property of Fe/graphite oxide nanocomposites prepared at 600  °C (FeGO600) is the best. When the thickness is 1 mm, the maximum theoretical reflection loss of FeGO600 is −9 dB and the frequency region in which the maximum reflection loss is more than −6.0 dB is 11–18 GHz. In conclusion, FeGO600 is a good candidate for microwave absorbent due to its low density, wide frequency region for microwave absorption and large reflection loss.  相似文献   

9.
Coatings with flake carbonyl-iron particles as absorber and epoxy-silicone resins as matrix were prepared. The complex permittivity, complex permeability and microwave-absorbing properties were investigated in the frequency range of 2-18 GHz. Both the real part of permittivity and permeability were increased with carbonyl-iron weight concentration. The minimum reflection loss shifts to the low-frequency region with increase in carbonyl-iron weight concentrations. The minimum reflection loss value of −42.5 dB was obtained at 10.6 GHz for the coatings with 55 wt% carbonyl-iron. The values of adhesive power and impact strength are up to 24 MPa and 50 kg cm, respectively. These results show that the coatings possess good microwave-absorbing and mechanical properties.  相似文献   

10.
In this paper, tissue scaffold made from polyamide66 (PA66) and hydroxyapatite (HA) was prepared by co-precipitation and thermal-induced phase inversion method, in which biomimetic HA crystals were uniformly distributed in PA66 matrix. The porosity of the scaffold is about 81% and the macropore size is from 50 to 500 μm. The ethylene vinyl acetate (EVA) layer was thermally molded on one surface of HA-PA66 scaffold to develop EVA/HA-PA66 composite for articular cartilage/bone substitute, i.e., upper EVA layer for cartilage substitute and underlying HA-PA66 scaffold for bone bonding and fixation. The physicochemical and mechanical properties of EVA were also investigated. The results indicate that the tensile and compressive strength of EVA is about 4.65 MPa and 9.44 MPa respectively, while its mean friction coefficient is very small, only about 0.23. The cell culture of EVA and HA-PA66 scaffold shows that these materials possess good cytocompatibility. The proposed preparation method is novel and effective, and the EVA/HA-PA66 composite has good potential for simultaneous substitute of articular cartilage and underlying bone.  相似文献   

11.
Metallo-organic decomposition derived dielectric thin films of calcium zirconate doped with various concentrations of strontium ((Ca, Sr)ZrO3) were prepared on Pt coated silicon substrate. Mainly in this paper, we present the investigations of their structural developments and present their electric and dielectric properties as well. The structural developments show that the CaZrO3 film has amorphous structure with carbonate existing when annealed at 600 °C, while annealed at 650 °C and above, the carbonate is decomposed and those films crystallize into perovskite phase without preferred orientation. In addition, the prepared (Ca, Sr)ZrO3 films with their Zr-O bonds affected by strontium doping are homogenous and stable as solid solutions in any concentration of strontium and all Bragg diffraction characteristics for the films shift downward with the increase in the concentration of strontium. Moreover, the electric properties show that the (Ca, Sr)ZrO3 films have very low leakage current density and high breakdown strength; typically, the CaZrO3 film annealed at 650 °C has the leakage current density approximately 9.5 × 10−8 A cm−2 in the field strength of 2.6 MV cm−1. Furthermore, the dielectric properties show that their dielectric constants are higher than 12.8 with very little dispersion in the frequency range from 100 Hz to 1 MHz and are independent of applied dc bias as well. The dielectric properties, in combination with the electric properties, make the materials promising candidates for high-voltage and high-reliability capacitor applications.  相似文献   

12.
ZnO nanocapsules have been synthesized hydrothermally. The structural and morophological properties were investigated using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), FTIR, Raman, EDS and UV-vis absorption spectroscopy. For the first time chemical sensing properties of the synthesized ZnO nanocapsules have been investigated by I-V technique, where chloroform is used as a target compound. The chloroform sensors show good sensitivity (0.478 μA cm−2 mM−1), lower detection limit (6.67 μM), and large linear dynamic range (LDR, 12.0 μM-12.0 mM) with good linearity (R, 0.8523) in short response time. Additionally, photocatalytic activity of the prepared capsule shaped ZnO photocatalyst was evaluated by the degradation of acridine orange. Prepared ZnO nanocapsules posses high photocatalytic activity when compared with TiO2-UV100.  相似文献   

13.
In this paper, compact bulk nanocomposite Nd2Fe14B/α-Fe magnetic materials were prepared by hot extrusion of amorphous and nanocrystalline powders, which were prepared by high-energy ball-milling (HEBM) of the Nd2Fe14 B-type hard magnetic phase with 20 vol% of α-Fe as soft magnetic phase. The extrusion temperature has important influence on magnetic properties and microstructure of magnetic materials. The results show that the grain size of Nd2Fe14B and α-Fe phase increases steadily with increasing extrusion temperature. Furthermore, optimal extrusion temperature of 1223 K occurs, at which the highest magnetic properties and relative density can be obtained.  相似文献   

14.
We have studied silica-gel by sol–gel technique for the preparation of new dye-laser materials. Silica gel rods with dimension 50 mm × 10 mm have been prepared successfully without breaking. It shows high transparency and good mechanical strength. Tetraethylorthosilicate (TEOS), formamide in molar ratio (0.25:0.70), 80 ml ethanol, 20 ml dimethylformamide (DMF), 10 ml water, hydrochloric acid as a catalyst (at pH 6) and 0.5 ml silicone defoaming agent/surfactant have been used. The synthesis has been carried out in a beaker and the reaction mixture is caste in to the flat bottom glass tubes at 40 °C after thoroughly mixing of all the ingredients. These complex reactions, that carried out by hydrolysis and condensation in the silica gel formation show less gel time ∼8–10 h at 40 °C. The doping of dye (Nile Blue 690) has been taken during the preparation of all the ingredients solution mixture. It has been observed that the compatibility of Nile Blue dye with silica-gel promise good homogeneity with transparency.  相似文献   

15.
A kind of novel lead-free ferroelectrics, potassium bismuth titanate, K0.5Bi0.5TiO3 (KBT), has been prepared by sol-gel-hydrothermal and sol-gel routes, respectively, and the structural characters of as-synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results indicated that sol-gel-hydrothermal route led to the formation of KBT nanowhiskers with diameters of 20 nm and lengths of 1 μm, and the processing temperature was as low as 160 °C, but the normal sol-gel route tended to form KBT cubic particles of about 100-200 nm, and the processing temperature was higher than 700 °C. It is believed that the gel precursor and hydrothermal environment play an important role in the formation of the nanowhiskers at low temperature. Due to the good sinterability of nanowhiskers, the ferroelectric and dielectric properties of KBT ceramics prepared by sol-gel-hydrothermal route were super to that prepared by sol-gel route.  相似文献   

16.
We have studied silica gel by sol–gel technique for the preparation of new dye-laser materials. Silica gel rods with dimension 50 × 10 mm2 have been prepared successfully without breaking. It shows high transparency and good mechanical strength. Tetraethylorthosilicate (TEOS), formamide in molar ratio (0.25:0.70), 80 ml ethanol, 20 ml dimethylformamide (DMF), 10 ml water, hydrochloric acid as a catalyst (at pH 6), and 0.5 ml silicone defoaming agent/surfactant have been used. The synthesis has been carried out in a beaker and the reaction mixture is caste in to the flat bottom glass tubes at 40 °C after thoroughly mixing of all the ingredients. These complex reactions, that carried out by hydrolysis and condensation in the silica gel formation show less gel time ∼8–10 h at 40 °C. Coumarin. 440 dye was doped during the preparation of all the ingredients solution mixture. It has been observed that that the compatibility of Nile blue dyes with silica-gel promise good homogeneity with transparency.  相似文献   

17.
Because of the high saturation magnetization of nanocrystalline Fe84.6N7.8B7.4 ribbon with α″-Fe16N2 nanocrystallites embedded in an amorphous matrix, its electrical resistivity and magnetostriction were studied to improve its soft magnetic properties. The prepared sample exhibits a higher electrical resistivity of 246 μΩ cm and a smaller saturation magnetostriction of 2.52 ppm. The present results indicate that nanocrystalline Fe84.6N7.8B7.4 ribbon with α″-Fe16N2 phase is a good candidate for soft magnetic materials.  相似文献   

18.
Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser (λ = 248 nm) of about 1 J/cm2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties.  相似文献   

19.
Formation of Fe-C-Si-B-P-(Cr-Al-Co) bulk metallic glasses with enhanced glass-forming ability (GFA) and magnetic properties fabricated using industrial pig-iron and Fe-P alloys as raw materials has been studied. It was found that GFA of the pig-iron (Fe79.5C18.0Si2.3P0.2, at%) could be improved by proper additions of only metalloids C, Si, P and B, and fully glassy structure was obtained in the Fe75.5C7.0Si3.3B5.5P8.7 alloy with a critical diameter of 1 mm. With suitable additions of metallic elements Cr, Co and Al, the GFA is further increased and fully amorphous rods in 4 mm diameter can be prepared for the Fe68.2C7.0Si3.3B5.5P8.7Cr2.3Al2.0Co3.0 alloy that shows a unique combination of good soft-magnetic properties (Ms=1.03 T, Hc=9.39 A/m), high GFA and high fracture strength. These low-cost Fe-based bulk metallic glasses fabricated using industrial raw materials have a potential to be utilized as engineering materials.  相似文献   

20.
Carbon materials with molecular sieve properties (CMS) were prepared by pyrolysis of cotton fabrics by chemical activation procedures. To evaluate the changes in the chemical and textural properties, the impregnants AlCl3, ZnCl2 and H3PO4 were used at 1123 K. The materials were characterized using adsorption of nitrogen and carbon dioxide, TPD, and immersion calorimetry in C6H6. Adsorption kinetics of O2, N2, CO2, CH4, C3H8 and C3H6 were measured in all the prepared materials to determine their behaviour as molecular sieves. The results confirm that the chemical used as impregnant has a significant effect on the resulting CMS separation properties. All materials exhibit microporosity and low oxygen surface group contents; however, the sample impregnated with zinc chloride, with an immersion enthalpy value of 66.4 J g−1 in benzene, exhibits the best performance in the separation of CH4-CO2 and C3H8-C3H6 at 273 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号