首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of complexes formed upon the extraction of UVI and ThIV nitrates with O-n-nonyl(N,N-dibutylcarbamoylmethyl) methyl phosphinate (L) from solutions of nitric acid without additional solvent was determined by 31P NMR spectroscopy. The structures of the complexes formed were studied by IR spectroscopy. Uranium(VI) is extracted from 3 and 5 M solutions of HNO3 as the [UO2(L)2(NO3)2] complex, while thorium(IV) is extracted from 5 M HNO3 as the [Th(L)3(NO3)3]+·NO 3 complex. In both cases, ligand L has bidentate coordination. Ligand L contacts with 3 and 5 M nitric acid to form adducts L·HNO3 and L· (HNO3)2, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2460–2464, November, 2005.  相似文献   

2.
A new insoluble solid functionalized ligand system bearing chelating ligand group of the general formula P-(CH2)3-N[CH2CONH(C6H4)NH2]2, where P represents [Si–O] n polysiloxane network, was prepared by the reaction of the immobilized diethyliminodiacetate polysiloxane ligand system, P-(CH2)3N(CH2CO2Et)2 with 1,2-diaminobenzene in toluene. 13C CP-MAS NMR, XPS and FTIR results showed that most ethylacetate groups (–COOEt) were converted into the amide groups (–N–C=O). The new functionalized ligand system exhibits high capacity for extraction and removal of the metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with efficiency of 95–97% after recovery from its primary metal complexes. This functionalized ligand system formed 1:1 metal to ligand complexes.  相似文献   

3.
The synergistic extraction of [RuNO(NO2)4OH]2? by diphenyl(dibutylcarbamoylmethyl)phosphine oxide (L) in the presence of nonprecious metal cations (M2+) is studied; the extraction occurs on the account of the formation of heterometal complexes [RuNO(NO2)4OHMLm] (M = Zn, Cu, Co, Ni) due to the addition of M2+ to ruthenium through the oxygen atoms of the OH and NO2 groups and the bidentate coordination of L to M2+. The extraction constants for Ru/M complexes and MLn(NO3)2 are determined. The variation in the extraction constants with changing M (Co, Zn, Cu > Ni) does not agree with the Irwing-Williams row, unlike the extraction with monodentate PO-containing extractants (Zn > Cu > Co > Ni). The feasibility of ruthenium extraction in the form of Ru/M complexes from complex nitrate-nitrite solutions is demonstrated.  相似文献   

4.
195Pt, 1H, and 13C NMR spectroscopy was used to study the structure of binuclear platinum(III) acetamidate complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands [Pt2(phen)2(acam)4](NO3)2 (1) and [Pt2(bipy)2(acam)4](NO3)2 (2) in aqueous solutions. The 195Pt NMR spectra of solutions of complexes 1 and 2 in D2O exhibit two signals with satellites due to the 195Pt–195Pt spin-spin coupling (1 J(Pt–Pt) ≈ 6345 Hz), whereas their 1H and 13C NMR spectra contain four sets of signals for the protons and the carbon atoms of the heterocyclic and acetamidate ligands. The signals were assigned using the COSY, NOESY, and HSQC/ HMBC experiments and comparing the coordination shifts of the signals for the protons of heterocycles. These data allowed us to draw a conclusion that binuclear complexes 1 and 2 in solution have a head-to-head structure with nonequivalent platinum(III) atoms (coordination cores PtN5 and PtN3O2), the axial-equatorial coordination of the bidentate heterocyclic molecules, and two bridging and two terminal acetamidate ligands.  相似文献   

5.
Synergetic extraction of [RuNO(NO2)4OH]2? by calix[4]arene phosphine oxides (L) in the form of Ru/M heterometallic complexes was studied in the presence of nonprecious metals (M2+). The main extraction laws were recognized for [M(NO3)2L n ] and [RuNO(NO2)4OH])ML m ], where M2+ = Zn2+, Cu2+, Co2+, or Ni2+ and n, m = 1 or 2; extraction constants were determined for these metals. The variation row of the extraction constants with varying metal (Zn2+ > Cu2+ > Co2+ > Ni2+) coincides with the Irving-Williams row. Two or three PO groups of extractant L and the OH and NO2 groups of the ruthenium anion are coordinated to the M2+ atom in Ru/M complexes. The conditions for generation of the Ru/Zn complex and its complete extraction were optimized as applied to the extraction of fission ruthenium from nitrated nitric acid and imitation solutions.  相似文献   

6.
Abstract  A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates. Graphical abstract   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Sulphoxide ligands in piperidinium based ionic liquid were demonstrated as highly efficient, selective and environmentally benign systems for the extraction of plutonium from acidic aqueous solution. The extraction followed ‘cation-exchange mechanism’ via [Pu(NO3)·L]3+ and [PuO2(NO3)·L]+ species. The extraction efficiency followed the trend: APSO > BPSO > BMSO. The phenyl substituted sulphoxides showed higher affinity for plutonium due to a combination of steric as well as electronic factors. Extraction process was thermodynamically spontaneous for all three solvent systems. Oxalic acid and sodium carbonate were suitable for quantitative stripping of Pu4+ and PuO2 2+, respectively. APSO in ionic liquid showed good radiolytic stability.  相似文献   

8.
The reaction of 3,6-di-(3-methyl-pyridin-2-yI)-s-tetrazine (DMPTZ, II) with CeIII salt [Ce(NO3)3 · 6H2O] generates a new ligand, N-(3-methyl-pyridin-2-yl)-formimidoyl-(3-methyl-pyridin-2-yl) hydrazone (L), and forms a new complex: a mononuclear complex [Ce(L)(NO3)2 (H2O)3] · NO3 (III). Crystal data for III: space group P-1, with a = 0.7133(4) nm, b = 1.1139(2) nm, c = 1.4572(3) nm, α= 102.13(2)°, β= 99.81(3)°, γ= 91.10(3)°, Z = 2, V = 1113.6(7) nm3, μ = 2.123 mm−1 and F(000) = 630. L acts as a tri-dentate chelating ligand in III. There are 10 coordination sites around Ce3+ of III, which are respectively occupied by seven oxygen atoms (four from two nitrate anions and three from three H2O molecules) and three nitrogen atoms (all from L). The cerium atom and three chelating nitrogen atoms are coplanar. The mechanism of the metal assisted decomposition is discussed briefly.  相似文献   

9.
Polymeric complexes of [Cu2Cl2L2] copper(I) chloride (1) (L = N1,N2-bis(5-methylpyridin-2-yl)-oxalamide)) and {[Cu2(C2O4)Cl2L](L)·2H2O} copper(II) chloride (2) are obtained. The complexes are studied by powder and single crystal XRD. It is found that during the reaction of L with copper(II) chloride in the formation of complex 1 copper(II) is reduced to copper(I), while the formation of complex 2 is accompanied by the hydrolysis of the ligand.  相似文献   

10.
Heterometallic complexes [RuNO(NO2)4OHCuPy2(H2O)] (I) and [RuNO(NO2)4OHCuPy3] (II) are described structurally for the first time. In complex I, the ruthenium anion is coordinated to the copper atom by the bridging OH group and two bridging nitro groups; in complex II, by the bridging OH group and one bridging nitro group. Dimers are formed in the crystal lattice of complex II due to the interaction of the copper atom and the nitro group of the ruthenium anion in trans position to the bridging NO2 group.  相似文献   

11.
Single-molecule magnets (SMMs) are regarded as promising candidates for ultrahigh-density storage, quantum information processing and molecular spintronics. It is a crucial challenge for chemists to modulate magnetic dynamics of SMMs. Here, we successfully synthesized two 3d-4f polynuclear compounds [Co2Dy(TTTTCl)2(MeOH)]NO3·3MeOH (1) and [Co2Dy(TTTTCl)2 (MeOH)][Co(HTTTTCl)](NO3)2·2.5MeOH·2H2O (2), where H3TTTTCl=2,2′,2′′-(((nitrilotris(ethane-2,1-diyl)) tris(azanediyl)) tris(methylene))tris-(4-chlorophenol). On applying the approach by co-crystallization of bulky diamagnetic moiety, the effective energy barrier enhances from 401 K (1) to 536 K (2), which are both among the highest d-f heterometallic SMMs.  相似文献   

12.
Compared were dialkylcalix[4]phosphine oxides (L) having PO groups in the opposing rims as regards the extraction of [RuNO(NO2)4(OH)]2−, nonprecious metals (M2+), and Ru/M heterometallic complexes of their base. The extraction constants for the ion association {(Na+)2(LH2O) r [RuNO(NO2)4(OH)]2− and the degree of aggregation of L were calculated. The destruction of (LH2O) r upon metal extraction was verified IR-spectroscopically. The stoichiometry was determined and extraction constants were calculated for mono- and binuclear complexes [M m L n (NO3)2m ] and mononuclear Ru/M species [RuNO(NO2)4(OH)ML n ]. Nonprecious metals form mononuclear ML complexes in the lower rim. The size of the upper rim is responsible for the addition of a second metal nitrate molecule or addition to L or the addition of a second L molecule to the metal. Ru/M complexes with all L are present in an organic phase as two mononuclear species, ML and ML2. Rationale is given to the selection of extraction systems for recovery of ruthenium from nitrated nitric acid solutions selectively or together with actinides and lanthanides in the form of Ru/M complexes.  相似文献   

13.
A method was developed for the synthesis of mixed-metal heterospin compounds with the direct coordination of the nitroxide fragment based on the replacement of acetonitrile molecules in the heterotrinuclear complex [Co2Gd(NO3)Piv6(CH3CN)2] with nitroxide molecules. The molecular and crystal structure of the heterospin mixed-ligand heterotrinuclear CoII, GdIII, CoII complex [Co2Gd(NO3)Piv6(NIT-Me)2], where NIT-Me is stable nitronyl nitroxide, was established. The magnetic properties of this complex were investigated in the temperature range of 2–300 K. The coordination of nitroxide groups to CoII ions is responsible for strong exchange interactions between the unpaired electrons in the exchange clusters {>-·O-CoII}, resulting in the virtually complete spin coupling between each coordinated >N-·O group and one of the unpaired electrons of each CoII ion at temperatures below 200 K. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1742–1745, September, 2007.  相似文献   

14.
Four complex salts with the polyatomic [Rh(NH3)6]3+ cation are synthesized and studied by X-ray diffraction. The crystallographic characteristics of [Rh(NH3)6](WO4)Cl are determined and the structures of [Rh(NH3)6]Cl3, [Rh(NH3)6](ReO4)3·2H2O, and [Rh(NH3)6](MoO4)Cl·3H2O are solved. The features of mutual packing of the fragments are studied.  相似文献   

15.
Cationic arene complexes [Cb*Co(naphthalene)]+ (2, Cb* = C4Me4) and [Cb*Co(phenanthrene)]+ were synthesized by the reactions of [Cb*Co(MeCN)3]+ with arenes. The [Cb*Co(anthracene)]+ complex was synthesized by the abstraction of the iodide ion from [Cb*CoI]2 by TIBF4 in the presence of anthracene. Complex 2 exchanges the naphthalene ligand for other arenes at room temperature. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1861–1863, September, 2007.  相似文献   

16.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

17.
[Co(NH3)6][AuX4]X2 binary complex salts, where X = Cl? (I) and Br? (II), have been obtained and defined by element, X-ray diffraction, and thermal analyses and by IR, Raman, and electron spectroscopy. The compounds are isostructural. Their structural units are the [Co(NH3)6]3+ complex cations, the [AuX4]? complex anions, and the X? anions. The plane square environment of the gold atom is completed to an elongated bipyramid by two halide ions lying at distances Au...Cl 3.245 Å for I and Au...Br 3.362 Å for II. The thermolysis products of I and II are pure gold and cobalt metal powders when thermolysis is performed under hydrogen and a mixture of metallic gold with cobalt halide in a reaction under an inert atmosphere.  相似文献   

18.
Enthalpies of complex formation for glycine (HL±) with Ce3+ and Er3+ ions at 298.15 K and the value of the ionic strength of 0.5 (KNO3) are determined by calorimetric means using two independent procedures. Thermodynamic characteristics of the reactions of formation for complexes of glycine with Ce3+ and Er3+ ions at various [metal]: [ligand] molar ratios are calculated.  相似文献   

19.
The salt of cobalt hexacyanide with the photochromic mononitrosyl cation [RuNO(NH3)5]3+ with the composition [RuNO(NH3)5][Co(CN)6] was synthesized. Single crystals of the salt were grown, and the crystal structure was solved. The photochromic properties were studied by differential scanning calorimetry (DSC). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 545–548, March, 2008.  相似文献   

20.
The complexation reactions between La3+, Y3+ and Ce3+ cations with the macrocyclic ligand, kryptofix 21, were studied in methanol-acetonitrile (MeOH-AN) and methanol-methylacetate (MeOHMeOAc) binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that in most solvent systems, the kryptofix 21 forms a 1: 1 [M: L] complex with La3+, Y3+ and Ce3+ metal cations, but in the case of Y3+ cation in pure methylacetate, in addition of formation of a 1: 1 [ML] complex, 1: 2 [ML2] and 1: 3 [ML3] complexes are formed in solution. In the case of Ce3+cation, a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed in this solvent system at all studied temperatures. The electrical conductance data in acetonitrile, show that a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed between the ligand and La3+ and Ce3+ metal cations at different temperatures. The stability constants of the 1: 1 [ML] complexes were determined using the conductometric data and a computer program, GENPLOT. A non-monotonic relationship was observed between logK f of the 1: 1 complexes with the composition of the binary solvent solutions which was discussed in term of solvent-solvent interactions and also preferential solvation of the metal cations and the ligand in solutions. The selectivity order of the ligand for the metal cations in MeOH–AN and MeOH–MeOAc binary solvent solutions, at 25°C was found to be: Y3+ > La3+ > Ce3+ and La3+ > Y3+ > Ce3+, respectively. The values of the standard thermodynamic quantities (ΔH c ° and ΔS c ° ) for formation of the 1: 1 complexes were obtained from temperature dependence of the stability constans of the complexes and the results show that the thermodynamics of the complexation reactions between kryptofix 21 and La3+, Y3+ and Ce3+ cations, is affected by the nature and composition of the mixed solvents systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号