首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a mass spectrometric investigation of the binding properties of sulfonamide anion receptors, an atmospheric pressure chemical ionization mass spectrometric (APCI-MS) method involving direct infusion followed by thermal desorption was employed for identification of anionic supramolecular complexes in dichloromethane (CH2Cl2). Specifically, the dansylamide derivative of tris(2-aminoethyl)amine (tren) (1), the chiral 1,3-benzenesulfonamide derivatives of (1R,2S)-(+)-cis-1-amino-2-indanol (2), and (R)-(+)-bornylamine, (3), were shown to bind halide and nitrate ions in the presence of (n−Bu)4N+X (X = Cl, NO3, Br, I). Solutions of receptors and anions in CH2Cl2 were combined to form the anionic supramolecular complexes, which were subsequently introduced into the mass spectrometer via direct infusion followed by thermal desorption. The anionic supramolecular complexes [M+X], (M=13, X=Cl, NO3, Br, I) were observed in negative mode APCI-MS along with the deprotonated receptors [M−H]. Full ionization energy of the APCI corona pin (4.5 kV) was necessary for obtaining mass spectra with the best signal-to-noise ratios.  相似文献   

2.
Copper(I) complexes of thioureas having the general formulae [CuLnBr] and [CuLn]Br [where, n = 1 − 4 and L = thiourea (Tu), N-methylthiourea (Metu), N-ethylthiourea (Ettu), N,N-dipropylthiourea (Dprtu), N,N-dibutylthiourea (Dbtu) or N,N-diphenylthiourea (Dphtu)] were prepared and characterized by elemental analysis, IR, and NMR (1H and 13C) spectroscopy. The crystal structure of one of them, [Cu(Metu)4]Br (1), was determined by X-ray crystallography. The X-ray structure of 1 describes a tetrahedral geometry around copper(I) with all Metu ligands binding through sulfur atoms. An upfield shift in the 13C NMR and downfield shift in the 1H NMR spectra are consistent with the thione coordination to copper(I). Antimicrobial activities of the complexes were evaluated by the minimum inhibitory concentration method. The results showed that only [Cu(Ettu)3Br] was effective in inhibiting the growth of all the tested organisms (gram-positive, gram-negative bacteria, and Candida sp.), while the other complexes were not effective against all the organisms.  相似文献   

3.
The ability of new synthetic receptors, i.e., p-tert-butylthiacalix[4]arenes tetrasubstituted at the lower rim and containing secondary amide groups to form complexes with a number of spherical (F, Cl, Br, I), Y-shaped (MeCOO), trigonal (NO3 ), and tetrahedral (H2POO4 ) anions has been studied. It was shown that the nature of substituents on the nitrogen atom of the amide groups and configuration of the macrocycle affect the stability constant values of the forming complexes.  相似文献   

4.
New bis-benzimidazole based diamide ligands N, N′-bis(2-methyl benzimidazolyl)-benzene-1,3-dicarboxamide [GBBA] and N-Octyl-N, N′-bis(2-methyl benzimidazolyl)-benzene- 1,3-dicarboxamide [O-GBBA] have been synthesized and utilized to prepare Cu(II) complexes of general composition [Cu(GBBA)X 2] · nH2O and [Cu(O-GBBA)X2] · n H2O, where X is an exogenous anionic ligand (X = Cl, NO3, SCN). The oxidation of electron deficient olefins has been investigated using [Cu(O-GBBA)X2] · nH2O as catalyst and TBHP as an alternate source of oxygen. The respective ketonic products have been isolated and characterized by 1H-NMR. The complex [Cu(GBBA)(NO3)2] · 4H2O has been characterized structurally. It crystallizes in a monoclinic space group C2/c. Low temperature EPR spectra have been obtained for the complexes that shows gII > gI > 2.0024, indicating a tetragonal geometry in the solution state. The complexes display a quasi reversible redox wave due to the Cu(II)/Cu(I) reduction process. The E1/2 values shift anodically as NO3 < SCN < Cl.  相似文献   

5.
Abstract  The electrospray mass spectrometric (ESI–MS) behavior of the complexes trans-dichloro(ethylenediamine-N,N′-di-3-propionato)platinum(IV), trans-dibromo(ethylenediamine-N,N′-di-3-propionato)platinum(IV), dichloro(ethylenediamine-N,N′-di-3-propionic acid)platinum(II), tetrachloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), chlorotribromo(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), and dichloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(II), with the formulae trans-[PtCl2(eddp)] (1), trans-[PtBr2(eddp)] (2), [PtCl2(H2eddp)] (3), [PtCl4(Bu2eddp)] (4), [PtBr3Cl(Bu2eddp)] (5), and [PtCl2(Bu2eddp)]·H2O (6), is reported. The deprotonated molecular ions or halide adducts are usually observed. ESI–MS data demonstrate the usefulness of the method for efficient characterization of metal complexes in solution. Graphical Abstract     相似文献   

6.
Four new organic ammonium tetrathiotungstates (NMeenH2)[WS4] (1), (N,N′-dm-1,3-pnH2)[WS4] (2), (1,4-bnH2)[WS4] (3), and (mipaH)2[WS4] (4), (NMeenH2 = N-methylethylenediammonium, N,N′-dm-1,3-pnH2 = N,N′-dimethyl-1,3-propanediammonium, 1,4-bnH2 = 1,4-butanediammonium, and mipaH = monoisopropylammonium) were synthesized by the base promoted cation exchange reaction and characterized by elemental analysis, infrared, Raman, UV-Vis and 1H NMR spectroscopy as well as single crystal X-ray crystallography. The structures of 14 consist of [WS4]2− tetrahedra which are linked to the organic ammonium cations via N–H⋯S hydrogen bonding. The strength and number of the S⋯H interactions affect the W–S bond lengths as evidenced by distinct short and long W–S bonds. The IR spectra exhibit splitting of the W–S vibrations, which can be attributed to the distortion of the [WS4]2− tetrahedron. From a comparative study of several known tetrathiotungstates it is observed that a difference of more than 0.033 ? between the longest and shortest W–S bonds in a tetrathiotungstate will result in the splitting of the asymmetric stretching vibration of the W–S bond.  相似文献   

7.
Two tetranuclear copper(II) complexes bridged by asymmetrical N,N′-bis(substituted)oxamides have been synthesized and characterized as [Cu4(dmapob)2(Me2bpy)2](pic)2·6H2O (1) and [Cu4(oxbe)2(dabt)2](pic)2 (2), where H3dmapob and H3oxbe denote N-benzoato-N′-[3-(dimethylamino)propyl]oxamido and N-benzoato-N′-(2-aminoethyl)oxamide, respectively; and Me2bpy, dabt, and pic represent 4,4′-dimethyl-2,2′-bipyridine 2,2′-diamino-4,4′-bithiazole, and 2,4,6-trinitrophenol, respectively. Complex 1 was characterized by elemental analyses, IR and electronic spectra, and single-crystal X-ray diffraction. Its structure consists of two asymmetrical binuclear copper(II) units linked by carboxyl bridges into a circular tetranuclear copper(II) complex with an embedded center of inversion. The copper(II) centers are in square-planar and distorted square-pyramidal environments. Hydrogen bonds and aromatic stacking interactions link the tetranuclear copper(II) fragments into a 3D supramolecular structure. The interactions of complexes 1 and 2 with herring sperm DNA (HS-DNA) were investigated by electronic and fluorescence spectra and viscosity measurements. Both complexes bind to HS-DNA via the intercalative mode, and complex 2 displays a significant binding propensity to HS-DNA.  相似文献   

8.
A new symmetrical vicinal dioxime, N,N′-bis-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}diaminoglyoxime (LH4), was prepared by reacting anti-dichloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of ligand with Ni2+ salts gave mono-and homopentanuclear complexes, [Ni(LH3)2] and [Ni5(LH)2X2]. Furthermore, heteropentanuclear complexes of dioxime ligand, [Cu4Ni(LH)2X4], were prepared by the reaction of [Ni(LH3)2)] with Cu2+ salt and a monodentate ligand (X = SCN, CN, or N 3 ). The structures of both the new symmetrical vicinal dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS spectra, and magnetic susceptibility. The elemental analyses and spectral data indicate that the hydrazone side of ligand acts as a O,N,O′ tridentate and the fourth position is occupied with monodentate anion such as SCN, CN, N 3 .  相似文献   

9.
Summary. Four new organic ammonium tetrathiotungstates (NMeenH2)[WS4] (1), (N,N′-dm-1,3-pnH2)[WS4] (2), (1,4-bnH2)[WS4] (3), and (mipaH)2[WS4] (4), (NMeenH2 = N-methylethylenediammonium, N,N′-dm-1,3-pnH2 = N,N′-dimethyl-1,3-propanediammonium, 1,4-bnH2 = 1,4-butanediammonium, and mipaH = monoisopropylammonium) were synthesized by the base promoted cation exchange reaction and characterized by elemental analysis, infrared, Raman, UV-Vis and 1H NMR spectroscopy as well as single crystal X-ray crystallography. The structures of 14 consist of [WS4]2− tetrahedra which are linked to the organic ammonium cations via N–H⋯S hydrogen bonding. The strength and number of the S⋯H interactions affect the W–S bond lengths as evidenced by distinct short and long W–S bonds. The IR spectra exhibit splitting of the W–S vibrations, which can be attributed to the distortion of the [WS4]2− tetrahedron. From a comparative study of several known tetrathiotungstates it is observed that a difference of more than 0.033 ? between the longest and shortest W–S bonds in a tetrathiotungstate will result in the splitting of the asymmetric stretching vibration of the W–S bond.  相似文献   

10.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

11.
The new tetradentate symmetrical (2R,2′S)-1,1′-piperazine-1,4-diyldipropane-2-thiol) (L1), (2S)-1-[bis(2-aminoethyl)amino]propan-2-ol) (L2), and 2-{(E)-[((1R,2S)-2-{[(1Z)-(2-hydroxy phenyl)methylene]amino}cyclohexyl)imino]methyl}phenol (L3) ligands were synthesized and characterized on the basis of FT-IR, 1H, 13C NMR, EI mass, and elemental analysis. Three commercially available ligands, (2,2′-[ethane-1,2-diylbis(thio)]diethanol (L4), 2,2′-dithiodiethanenamine (L5), and (2,2′-[ethane-1,2-diyldi(imino)] diethanol (L6), were also studied. Pt(II) complexes were characterized by FTIR, elemental analysis and thermal methods. Thermal behaviors of these complexes were investigated in the range 10–1000 °C. Magnetic properties were also studied, and the all complexes were found to be diamagnetic. The structures consist of the monomeric units in which the Pt(II) atoms exhibit square planar geometry. N,N′-bis(salicylidene)-1,2-cyclohexane has been synthesized and characterized by X-ray single crystal diffraction measurement. The ligand crystallizes in monoclinic crystal system and space group, Cc.  相似文献   

12.
A novel artificial receptor, (3′-nitrobenzo)[2,3-d]-(3′′-nitrobenzo)[9,10-d]-1,4,8,11-tetraazacyclotetradecane-5,7,12,14-tetraone, has been synthesized and shows high selective and recognitive ability for F- among F, Cl, Br, AcO, H2PO4 by UV-vis and 1H NMR titration experiments. Theoretical investigations suggest that the fluoride selectivity among various anions comes from the fact that the fluoride approaches much closer to the amide protons than other anions located above the cavity. The interaction energies support the large binding ability difference between F and Cl/Br/AcO/H2PO4.  相似文献   

13.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

14.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

15.
The addition of the phthalimidonitrene fragment, resulting from oxidation ofN-aminophthalimide by lead tetraacetate at −20 to −30°C, to the N=N-bond of 5-bromospirol[l-pyrazolinio-3,1′-cyclopropane] (1) affords, apart from the stable 5-bromo-N {spiro[l-pyrazolinio-3,1′-cyclopropane]}-N-phthalimidoamide (azimine2), regioisomeric azimine3, which is completely transformed into 3-acetoxy-N-{spiro[l-pyrazolinio-5,1′-cyclopropane]}-N-phthalimidoamide (4) under the reaction conditions. The acetoxy group in this product easily undergoes nuclcophilic substitution on treatment with McOH, NaN3, or the starting bromopyrazoline1. The structures of azimines obtained were established using NMR spectra, and the structure of the product of reaction of4 with1 was additionally proved by X-ray difraction data. Published inIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 11, pp. 1949–1953, November, 2000.  相似文献   

16.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-diaminomethyl-1,10-phenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-diaminomethyl-1,10-phenanthroline (L2) were synthesized. The hydrolytic kinetics of p-nitrophenyl phosphate (NPP) catalyzed by complexes of L1 and L2 with La(III), Gd(III) have been studied. Both LnL and LnLH−1 have been examined as catalysis for the hydrolysis of NPP in aqueous solution at 298 K, I = 0.10 mol dm−3 KNO3 at the pH range 7.4–9.1, respectively. Kinetic studies show that both LnL and LnLH−1 have catalytic activity, but LnLH−1 is more active than LnL in the hydrolysis of NPP. The second-order rate constants for the hydrolysis of NPP are kGdL1H−1 = 0.01399 mol−1 dm3 s−1, kGdL1 = 0.0000110 mol−1 dm3 s−1 for complexes GdL1H−1 and GdL1, respectively. A new mechanism was proposed for the hydrolysis of NPP catalyzed by LnL and LnLH−1.  相似文献   

17.
The complexes [Bu4N]2+[PtBr6]2− (I), [Ph4P]2+[PtBr6]2− (II), and [Ph3(n-Am)P]2+ (III) are synthesized by the reactions of tetrabutylammonium bromide, tetraphenylphosphonium bromide, and triphenyl(n-amyl)-tetraphenylphosphonium bromide, respectively, with potassium hexabromoplatinate (mole ratio 2: 1). After recrystallization from dimethyl sulfoxide, complexes I, II, and III transform into [Bu4N]+[PtBr5(DMSO)] (IV), [Ph4P]+[PtBr5(DMSO)] (V), and [Ph3(n-Am)P]+[PtBr5(DMSO)] (VI). According to the X-ray diffraction data, the cations of complexes IVVI have a slightly distorted tetrahedral structure. The N-C and P-C bond lengths are 1.492(7)–1.533(6) and 1.782(10)–1.805(10) ?, respectively. The platinum atoms in the mononuclear anions are hexacoordinated. The dimethyl sulfoxide ligands are coordinated with the Pt atom through the sulfur atom (Pt-S 2.3280(18)–2.3389(11) ?). The Pt-Br bond lengths are 2.4330(6)–2.4724(6) ?.  相似文献   

18.
N,N′-bis(salicylidene)-1,3-propanediamine (LH2), N,N′-bis(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2), N,N′-bis(salicylidene)-2-hydroxy-1,3-propanediamine (LOH3), N,N′-bis(2-hydroxyacetophenylidene)-1,3-propanediamine (LACH2) and N,N′-bis(2-hydroxyacetophenone)-2,2′-dimethyl-1,3-propanediamine (LACDMH2) were synthesized and reduced to their phenol-amine form in alcoholic media using NaBH4 (LHH2, LDMHH2, LOHHH2, LACHH2 and LACDMHH2). Heterodinuclear complexes were synthesized using Ni(II), Zn(II) and Cd(II) salts, according to the template method in DMF media. The complex structures were analyzed using elemental analysis, IR spectroscopy, and thermogravimetry. Suitable crystals of only one complex were obtained and its structure determined using X-ray diffraction, NiLACH·CdBr2·DMF2, space group orthorhombic, Pbca, a=20.249, b=14.881, c=20.565 ? and Z=8. The heterodinuclear complexes were seen to be of [Ni·ligand·MX2·DMF2] structure (ligand=LH2−, LDMH2−, LOHH2−, LACH2−, LACDMH2−, M=ZnII, CdII, X=Br, I). Thermogravimetric analysis showed irreversible bond breakage of the coordinatively bonded DMF molecules followed by decomposition at this temperature.  相似文献   

19.
The desolvation process in lanthanide pyridine-3,5-dicarboxylates of the formulae [Tb2pdc3(dmf)2]·dmf (1), [Ho2pdc3(dmf)2]·dmf (2), [Erdc3(dmf)2]·dmf (3), and [Yb2pdc3(dmf)2]·dmf (4) where pdc-C5H3N(COO)22−, dmf-N,N′-dimethylformamide) has been investigated by means of the TG–DSC, TG–FTIR, IR and XRD methods. Heating of the complexes in the range 30–260 °C lead to evolution of weakly bonded dmf molecules included in the channels as well those directly bonded with lanthanide atoms. The kinetic analysis revealed a multistep desolvation pattern.  相似文献   

20.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号