首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improvement of microbial cell cultures oxygenation can be achieved by the increase of total air pressure, which increases oxygen solubility in the medium. In this work, a pressurized bioreactor was used for Yarrowia lipolytica batch cultivation under increased air pressure from 1 to 6 bar. Cell growth was strongly enhanced by the pressure rise. Fivefold and 3.4-fold increases in the biomass production and in specific growth rate, respectively, were observed under 6 bar. The increase of oxygen availability caused the induction of the antioxidant enzyme superoxide dismutase, which indicates that the defensive mechanisms of the cells against oxidative stress were effective and cells could cope with increased pressure. The pregrowth of Y. lipolytica under increased pressure conditions did not affect the lipase production ability of the cells. Moreover, the extracellular lipase activity increased 96% using a 5-bar air pressure instead of air at 1-bar pressure during the enzyme production phase. Thus, air pressure increase in bioreactors is an effective mean of cell mass and enzyme productivity enhancement in bioprocess based in Y. lipolytica cultures.  相似文献   

2.
Fly ash collected from an Indian thermal power plant was characterised by scanning electron microscope (SEM)-energy dispersive spectrometer, X-ray diffraction and energy dispersive X-ray fluorescence analysis. The effect of fly ash on the growth and morphology of a metal-tolerant tropical marine yeast, Yarrowia lipolytica NCIM 3589, was studied. The growth of the yeast was unaffected by the presence 0.1, 0.2 or 0.3?% fly ash although the surface-to-volume ratio decreased. The yeast formed biofilms on immobilized fly ash as evidenced by SEM observations. The organism produced citric acid and additional extracellular proteins in the presence of fly ash. Leaching of metals from fly ash by Y. lipolytica was compared with chemical leaching by citric acid. Yeast cells were most effective in leaching Cu (59.41?%) although other metals (Zn, Ni, Cu and Cr) were also extracted. Transmission electron microscope images showed the deposition of metals at the cell wall, cell membrane and in the cytoplasm. This paper thus reports a potential application of Y. lipolytica for removal of different metals from solid waste material (fly ash).  相似文献   

3.
In view of ever-growing demand of biodiesel, there is an urgent need to look for inexpensive and promising renewable raw material oils for its production. In this context, the aim of this study was to evaluate the potential use of industrial wastes for low-cost production of oils through microbial fermentation. Among the strains tested, Yarrowia lipolytica grew best and produced highest lipid when grown on decanter effluent from palm oil mill. When crude glycerol by-product from a biodiesel plant was added into the effluent as a co-substrate, Y. lipolytica produced a higher biomass of 3.21 g/L and a higher amount of lipid of 2.21 g/L which was 68 % of the dry weight. The scale up and process improvement in a 5-L bioreactor increased the biomass and lipid up to 5.53 and 2.81 g/L, respectively. A semi-continuous mode of operation was an effective mode for biomass enhancement while a fed-batch mode was effective for lipid enhancement. These yeast lipids have potential to be used as biodiesel feedstocks because of their similar fatty acid composition to that of plant oil.  相似文献   

4.
The immobilized cellulase-producing mycelium of Trichoderma reesei was found to produce 2.9 U/ml of cellulase activity within 144 h while 2.1 U/ml of cellulase activity was produced within 120 h by the free mycelium of the same strain. When the immobilized mycelium of T. reesei was co-cultivated with the free cells of Yarrowia lipolytica SWJ-1b in flask, Y. lipolytica SWJ-1b could yield 10.7 g/l of citric acid and 3.9 g/l of isocitric acid from 40.0 g/l pretreated straw within 240 h. Under the similar conditions, Y. lipolytica SWJ-1b could yield 32.8 g/l of citric acid and 4.7 g/l of isocitric acid from 40.0 g/l pretreated straw supplemented with 20.0 g/l glucose within 288 h. When the co-cultures were grown in 10-l fermentor, Y. lipolytica SWJ-1b could yield 83.4 g/l of citric acid and 8.7 g/l of isocitric acid from 100.0 g/l of pretreated straw supplemented with 50.0 g/l glucose within 312 h.  相似文献   

5.
The aim of this study was to examine the impact of divalent copper, iron, manganese, and zinc ions on the production of erythritol from glycerol by Yarrowia lipolytica and their effect on the activity of erythrose reductase. No inhibitory effect of the examined minerals on yeast growth was observed in the study. Supplementation with MnSO4·7H2O (25 mg l?1) increased erythritol production by Y. lipolytica by 14.5 %. In the bioreactor culture with manganese ion addition, 47.1 g l?1 of erythritol was produced from 100.0 g l?1 of glycerol, which corresponded to volumetric productivity of 0.87 g l?1 h?1. The addition of Mn2+ enhanced the intracellular activity of erythrose reductase up to 24.9 U g?1 of dry weight of biomass (DW), hence, about 1.3 times more than in the control.  相似文献   

6.
The xylanaseB (XynB) (JX560731.1) gene of Aspergillus niger IA-001 was optimized according to the codon usage of Pichia pastoris and expressed in P. pastoris GS115. The optimized XynB expression level was increased 2.8 times relative to that of the wild-type XynB, and the dual-copy XynB (optimized) expression level was increased 1.9 times relative to that of the single-copy XynB (optimized). The activity of the dual-copy XynB ((XynB-opt)2) was maximized at 15,158.23?±?45.11 U/mL after 120 h of shaking. The optimal temperature and pH of (XynB-opt)2 were 50 °C and 5.0, respectively. (XynB-opt)2 showed a high specific activity of 6,853.00?±?20.08 U/mg. IC analysis of the standard xylooligosaccharides showed that (XynB-opt)2 was an endo-xylanase with X2 as the main degradation product. (XynB-opt)2 was highly specific towards different natural xylans. After 24 h of hydrolysis, more than 90 % of the total hydrolysis products of xylan were X2 and X1, almost no X4?~?X6. In addition, the enzyme exhibited resistance to many metal ions and low pH values. The superior catalytic properties of (XynB-opt)2 suggested its great potential as an effective additive in animal feed industry.  相似文献   

7.
Electromotive force (EMF) measurements using electrochemical concentration cells are often used to estimate the transport number of conducting species in ionic and mixed conductors. In this study, the proton transference number of an electrolyte based on CuO-modified Y-doped BaZrO3 (Ba(Zr0.84Y0.15Cu0.01)O3?δ , BZYCu) is determined using steam concentration cells based on Wagner's theory. According to the investigation, proton concentration cells including water vapor provide good estimates of the proton transference number of the BZYCu electrolyte, showing that the number increases as the water partial pressure, P(H2O), increases; the proton transference number also increases as the oxygen partial pressure P(O2) decreases, owing to the relatively lower hole conductivity of BZYCu at low P(O2) conditions. From the combination of proton transference number with the measured total conductivity, the proton conductivity of the BZYCu electrolyte is estimated as 0.0031 S/cm at 650 °C in wet argon atmosphere. The EMF values measured under real operating conditions of the PCFC test (fuel side, 3 % H2O + hydrogen; oxidant side, dry air) are found to be increased from 0.98 to 1.08 V as the temperature decreases from 650 to 550 °C.  相似文献   

8.
Mining fungal genomes for glucoamylase and α-amylase encoding sequences led to the selection of 23 candidates, two of which (designated TSgam-2 and NFamy-2) were advanced to testing for cooked or raw starch hydrolysis. TSgam-2 is a 66-kDa glucoamylase recombinantly produced in Pichia pastoris and originally derived for Talaromyces stipitatus. When harvested in a 20-L bioreactor at high cell density (OD600?>?200), the secreted TSgam-2 enzyme activity from P. pastoris strain GS115 reached 800 U/mL. In a 6-L working volume of a 10-L fermentation, the TSgam-2 protein yield was estimated to be ~8 g with a specific activity of 360 U/mg. In contrast, the highest activity of NFamy-2, a 70-kDa α-amylase originally derived from Neosartorya fischeri, and expressed in P. pastoris KM71 only reached 8 U/mL. Both proteins were purified and characterized in terms of pH and temperature optima, kinetic parameters, and thermostability. TSgam-2 was more thermostable than NFamy-2 with a respective half-life (t1/2) of >300 min at 55 °C and >200 min at 40 °C. The kinetic parameters for raw starch adsorption of TSgam-2 and NFamy-2 were also determined. A combination of NFamy-2 and TSgam-2 hydrolyzed cooked potato and triticale starch into glucose with yields, 71–87 %, that are competitive with commercially available α-amylases. In the hydrolysis of raw starch, the best hydrolysis condition was seen with a sequential addition of 40 U of a thermostable Bacillus globigii amylase (BgAmy)/g starch at 80 °C for 16 h, and 40 U TSgam-2/g starch at 45 °C for 24 h. The glucose released was 8.7 g/10 g of triticale starch and 7.9 g/10 g of potato starch, representing 95 and 86 % of starch degradation rate, respectively.  相似文献   

9.
The β-mannanase gene (1,029 nucleotide) from Bacillus subtilis MAFIC-S11, encoding a polypeptide of 342 amino acids, was cloned and expressed in Pichia pastoris. To increase its expression, the β-mannanase gene was optimized for codon usage (mannS) and fused downstream to a sequence-encoding modified α-factor signal peptide. The expression level was improved by 2-fold. This recombinant enzyme (mannS) showed its highest activity of 24,600 U/mL after 144-h fermentation. The optimal temperature and pH of mannS were 50 °C and 6.0, respectively, and its specific activity was 3,706 U/mg. The kinetic parameters V max and K m were determined as 20,000 U/mg and 8 mg/mL, respectively, representing the highest ever expression level of β-mannanase reported in P. pastoris. In addition, the enzyme exhibited much higher binding activity to chitin, chitosan, Avicel, and mannan. The superior catalytic properties of mannS suggested great potential as an effective additive in animal feed industry.  相似文献   

10.
Dilute-acid hydrolysis pretreatment of sugarcane bagasse resulted in release of 48% (18.4 g/L) of the xylan in the hemicellulose fraction into the hydrolysate as monomeric xylose. In order to enhance the recuperation of this monomer, a post-hydrolysis stage consisted of thermal treatment was carried out. This treatment resulted in an increase in xylose release of 62% (23.5 g/L) of the hemicellulose fraction. Original and post-hydrolysates were concentrated to the same levels of monomeric xylose in the fermentor feed. During the fermentation process, cellular growth was observed to be higher in the post-hydrolysate (3.5 g/L, Y x/s?=?0.075 g cells/g xylose) than in the original hydrolysate (2.9 g/L, Y x/s?=?0.068 g cells/g xylose). The post-treated hydrolysate required less concentration of sugars resulting in a lower concentration of fermentation inhibitors, which were formed primarily in the dilute acid hydrolysis step. Post-hydrolysis step led to a high xylose–xylitol conversion efficiency of 76% (0.7 g xylitol/g xylose) and volumetric productivity of 0.68 g xylitol/L h when compared to 71% (0.65 g xylitol/g xylose and productivity of 0.61 g xylitol/L h) for the original hemicellulosic hydrolysate.  相似文献   

11.
12.
Cysteine mutants of a cold-active lipase (PcLipI) from Penicillium cyclopium were designed by the software Disulfide by Design Ver. 1.20 in an effort to improve enzyme thermostability by addition of a disulfide bridge. Those mutants predicted by molecular dynamics simulation to have better thermostability than the wild type were first expressed in Escherichia coli BL21(DE3) and then, for further investigation, in Pichia pastoris GS115. By replacing Val248 and Thr251 with cysteines to create a disulfide bridge, the recombinant lipases reE-PcLipV248C-T251C (expressed in E. coli) and reP-PcLipV248C-T251C (expressed in P. pastoris) were obtained. Both had enhanced thermostability with half-lives at 35 °C about 4.5- and 12.8-fold longer than that of the parent PcLipI expressed in E. coli and P. pastoris, respectively. The temperature optima of reE-PcLipV248C-T251C and reP-PcLipV248C-T251C were 35 and 30 °C, which were each 5 °C higher than those of the parent PcLipI expressed in E. coli and P. pastoris. The K ms of reE-PcLipV248C-T251C and reP-PcLipV248C-T251C toward tributyrin were 53.2 and 39.5 mM, while their V maxs were 1,460 and 3,800 U/mg, respectively. PcLipV248C-T251C had better thermostability and catalytic efficiency than the other mutants and the parent PcLipI.  相似文献   

13.
Bioconversion of cellulosic material into glucose needs cellulase enzymes. One of the most important organisms that produces cellulases is Trichoderma reesei, whose cellulose enzymes are probably the most widely used in the industry. However, these enzymes are not stable enough at high pH and temperatures. The optimized synthetic endoglucanase II gene with Pichia pastoris codon preferences was secretary expressed in P. pastoris. Recombinant enzyme characterization showed maximum activity at pH 4.8 and temperature 75 °C, and it demonstrated increasing thermal stability in high temperature. The enzyme maintained its activity in a wide pH range from 3.5 to 6.5. The optimization of fermentation medium was carried out in shaking flasks. Recombinant protein expression at optimum conditions (pH 7, temperature 25 °C, and 1 % methanol induction) for 72 h demonstrated 2,358.8 U/ml endoglucanase activity units. To our knowledge, this is the highest acidic thermophilic endoglucanase activity that is reported in crude intracellular medium in P. pastoris. We conclude that P. pastoris is an appropriate host for high-level expression of optimized endoglucanase gene with improved thermal stability.  相似文献   

14.
The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O2 in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20–100% (v/v) O2 in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O2 in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3–2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1–4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).  相似文献   

15.
A constitutive expression vector for rhIL-2-HSA fusion protein production in yeast Pichia pastoris was constructed. The coding gene was placed in frame with the Saccharomyces cerevisiae α-factor secretion signal sequence under the control of the GAP promoter. The recombinant plasmid pGAPZαA-rhIL-2-HSA was integrated into the genome of the P. pastoris GS115. The effect of different carbon sources on rhIL-2-HSA fusion protein expression was evaluated in shaking flask cultures. We found that recombinant P. pastoris grew well and efficiently secreted rhIL-2-HSA fusion protein into the medium when using glucose as carbon source. To achieve higher production, the influence of initial pH and culture temperature was also evaluated. Fed-batch fermentation strategy using glucose as carbon source for constitutive expression of rhIL-2-HSA fusion protein was investigated in 5-L bioreactor and the expression level of rhIL-2-HSA could reach about 250 mg/L after 60-h fermentation. The rhIL-2-HSA fusion protein produced by this constitutive expression system was purified and exhibited a specific bioactivity of 1.040?×?106 IU/mg in vitro. This study described constitutive expression of rhIL-2-HSA fusion protein by P. pastoris and development of a simple high-cell density fermentation strategy for biologically active rhIL-2-HSA fusion protein using glucose as sole carbon source.  相似文献   

16.
A core/shell Fe3O4/gold nanocomposite was prepared for immobilizing of red blood cells on a gold electrode via conjugation to a cysteamine monolayer. The hemoglobin in the film undergoes direct electron transfer at a formal potential of ?330 mV and displays excellent electrocatalytic response to hydrogen peroxide, with a linear range from 9.6 µM to 2.6 mM. The limit of detection is 4.4 µM (S/N?=?3). The Michaelis–Menten constant is 120 µM. Owing to its good biocompatibility, the biosensor exhibits good stability and acceptable reproducibility. The nanocomposite film provided a good matrix for the immobilization of cells and for the preparation of cellular biosensors.  相似文献   

17.
A cDNA encoding for manganese peroxidase isozyme H4 (MnPH4), isolated from Phanerochaete chrysosporium, was expressed in Pichia pastoris, under the control of alcohol oxidase I promoter. The recombinant MnPH4 was efficiently secreted onto media supplemented with hemin at a maximum concentration of 500 U/L, after which purified rMnPH4 was used to decolorize the triarylmethane dye malachite green (MG). Response surface methodology (RSM) was employed to optimize three different operational parameters for the decolorization of MG. RSM showed that the optimized variables of enzyme (0.662 U), MnSO4 (448 μM), and hydrogen peroxide (159 μM) decolorized 100 mg/L of MG completely at 3 h. Additionally, UV–VIS spectra, high-performance liquid chromatography, gas chromatography–mass spectrometry, and liquid chromatography–electrospray ionization/mass spectrometry analysis confirmed the degradation of MG by the formation of main metabolites 4-dimethylamino-benzophenone hydrate, N, N-dimethylaniline (N,N-dimethyl-benzenamine), and methylbenzaldehyde. Interestingly, it was found that rMnPH4 mediates hydroxyl radical attack on the central carbon of MG. Finally, rMnPH4 degraded MG resulted in the complete removal of its toxicity, which was checked under in vitro conditions.  相似文献   

18.
Degradation of Methylene Blue by RF Plasma in Water   总被引:1,自引:0,他引:1  
Radio frequency (RF) plasma in water was used for the degradation of methylene blue. The fraction of decomposition of methylene blue and the intensity of the spectral line from OH radical increased with RF power. RF plasma in water also produced hydrogen peroxide. The density of hydrogen peroxide increased with RF power and exposure time. When pure water (300 mL) is exposed to plasma at 310 W for 15 min, density of hydrogen peroxide reaches to 120 mg/L. Methylene blue after exposed to plasma degraded gradually for three weeks. This degradation may be due to chemical processes via hydrogen peroxide and tungsten. The comparison between the experimental and calculated spectral lines of OH radical (A–X) shows that the temperature of the radical is around 3,500 K. Electron density is evaluated to be ?3.5 × 1020 m?3 from the stark broadening of the Hβ line.  相似文献   

19.
Both Syxyn11P and Syxyn11E, two codon-optimized genes encoding glycoside hydrolase (GH) family 11 hyperthermotolerant xylanases (designated SyXyn11P and SyXyn11E), were synthesized and inserted into pPIC9KM and pET-28a(+) vectors, respectively. The resulting recombinant expression vectors, pPIC9KM-Syxyn11P and pET-28a(+)-Syxyn11E, were transformed into Pichia pastoris GS115 and Escherichia coli BL21, respectively. The maximum activities of two recombinant xylanases (reSyXyn11P and reSyXyn11E) expressed in P. pastoris and E. coli reached 30.9 and 17.8 U/ml, respectively. The purified reSyXyn11P and reSyXyn11E displayed the same pH optimum at 6.5 and pH stability at a broad range of 4.5–9.0. The temperature optimum and stability of reSyXyn11P were 85 and 80 °C, higher than those of reSyXyn11E, respectively. Their activities were not significantly affected by metal ions tested and EDTA, but strongly inhibited by Mn2+ and Ag+. The K m and V max of reSyXyn11P toward birchwood xylan were 4.3 mg/ml and 694.6 U/mg, whose K m was close to that (4.8 mg/ml), but whose V max was much higher than that (205.6 U/mg) of reSyXyn11E. High-performance liquid chromatography analysis indicated that xylobiose and xylotriose as the major products were excised from insoluble corncob xylan by reSyXyn11P.  相似文献   

20.
To explore a better expression system for the production of keratinase, the keratinase gene from Bacillus licheniformis BBE11-1 was expressed in Escherichia coli, Bacillus subtilis, and Pichia pastoris. The corresponding recombinant keratinases were named ker E, ker B, and ker P, respectively. All recombinant keratinases had an optimal pH at 10 although the pH stability of ker E and ker P was higher than that of ker E. The optimal temperature and thermostability of ker P were enhanced compared with those of ker E and ker B. The recombinant keratinases were inhibited by Mn2+ but experienced little influence from other metal ions. Furthermore, all recombinant keratinases could retain almost 80 % activity after treatment with 1 M hydrogen peroxide for 5 h. Under optimized conditions in a 3-L fermenter, the maximum keratinase activities obtained from recombinant B. subtilis and P. pastoris were 3,010 and 1,050 U/mL, respectively. This maximum keratinase activity from B. subtilis is the highest activity ever reported for any bacterial strain. These results indicate that B. subtilis is the ideal host for keratinase production, with potential applications in textile processing and feed supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号