共查询到20条相似文献,搜索用时 15 毫秒
1.
Kouki Matsubara Shoji Mima Takashi Oda Hideo Nagashima 《Journal of organometallic chemistry》2002,650(1-2):96-107
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ2,η3:η5-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ2,η1:η5-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ2,η3:η5-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46. 相似文献
2.
Reactions of the dichloroboryl complex of osmium, Os(BCl2)Cl(CO)(PPh3)2, with water, alcohols, and amines: Crystal structures of Os[B(OH)2]Cl(CO)(PPh3)2, Os[B(OEt)2]Cl(CO)(PPh3)2, and
George R. Clark Geoffrey J. Irvine Warren R. Roper L. James Wright 《Journal of organometallic chemistry》2003,680(1-2):81
Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and water replaces both chloride substituents on the boryl ligand, without cleavage of the Os---B bond, giving yellow Os[B(OH)2]Cl(CO)(PPh3)2 (1). Compound 1 can be regarded as an example of a ‘metalla–boronic acid’ (LnM---B(OH)2) and in the solid state, X-ray crystal structure determination reveals that molecules of 1 are tetragonal pyramidal in geometry (Os---B, 2.056(3) Å) and are arranged in pairs, as hydrogen-bonded dimers. This same arrangement is found in the crystalline state for simple boronic acids. Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and methanol and ethanol produces yellow Os[B(OMe)2]Cl(CO)(PPh3)2 (2a) and yellow Os[B(OEt)2]Cl(CO)(PPh3)2 (2b), respectively. The crystal structure of 2b reveals a tetragonal pyramidal geometry with the diethoxyboryl ligand in the apical site and with an Os---B bond distance of 2.081(5) Å. Reaction between Os(BCl2)Cl(CO)(PPh3)2, and N,N′-dimethyl-o-phenylenediamine and N,N′-dimethyl-ethylenediamine produces yellow
(5) and yellow
(6), respectively. Compounds 1, 2a, 2b, 5, and 6 all react with carbon monoxide to give the colourless, six-coordinate complexes Os[B(OH)2]Cl(CO)2(PPh3)2 (3), Os[B(OMe)2]Cl(CO)2(PPh3)2 (4a), Os[B(OEt)2]Cl(CO)2(PPh3)2 (4b),
(7), and
(8), respectively, but in the case of 6 only, this CO uptake is easily reversible. The crystal structure of 5 is also reported. 相似文献
Full-size image
Full-size image
Full-size image
Full-size image
3.
Bahri Ülküseven Tülay Bal-Demirci Mehmet Akkurt erife Pnar Yaln Orhan Büyükgüngr 《Polyhedron》2008,27(18):3646-3652
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction. 相似文献
4.
Stéphanie M. Cornet Andrés E. Goeta Judith A.K. Howard Mark D. Roden Amber L. Thompson 《Journal of organometallic chemistry》2005,690(16):3630-3637
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature. 相似文献
5.
Guo-Liang Lu L. James Wright George R. Clark 《Journal of organometallic chemistry》2005,690(4):972-981
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported. 相似文献
6.
The reactions of [ReX2(η2-N2COPh-N′,O)(PPh3)2] with 4-phenylpyrimidine have been performed. As a result, the two complexes [ReX2(N2COPh)(4-PhPyr)(PPh3)2] (X = Cl, Br) (4-PhPyr = 4-phenylpyrimidine), isostructural in the solid state, have been obtained. The crystal and molecular structures of ([ReCl2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (1) and ([ReBr2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (2) have been determined. The electronic structure of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been examined using the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been discussed on this basis. 相似文献
7.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5). 相似文献
8.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis. 相似文献
9.
Milan Maji Mossaraf Hossain Madhumita Chatterjee Shyamal Kumar Chattopadhyay Vedavati G. Puranik Pinak Chakrabarti Saktiprosad Ghosh 《Polyhedron》1999,18(27):1436-3739
Reaction of Ru(PPh3)2Br2 with the NNS chelating tridentate ligand 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine (L) led to the isolation of the ruthenium(II) complex [Ru(L)(PPh3)Br2]. Reactivity of this complex with different bidentate chelating ligands revealed that the products are quite different from those obtained by reacting Ru(L)(PPh3)Cl2 (the corresponding cis dichloro complex) with the same ligands under comparable conditions. The mixed chelates were isolated and characterised by elemental analysis, magnetic moment measurement and by different spectroscopic methods along with their precursor. Electrochemistry of the complexes was examined by cyclic voltammetry using a platinum working electrode and a Ag/AgCl electrode as reference. The crystal structure of [Ru(L)(PPh3)Br2] disclosed that, unlike Ru(L)(PPh3)Cl2, the two bromo ligands are in trans position and this explained the difference in its reactivity pattern from the corresponding chloro complex. 相似文献
10.
Zinc(II) and mercury(II) thiocyanate complexes with nicotinamide, bis(nicotinamide-N)-bis(thiocyanato-N)zinc(II) (1) and catena-[nicotinamide-N-(μ-thiocyanato-S,N)(thiocyanato-S)mercury(II)] (2), have been prepared and characterized by spectroscopic, thermal and X-ray crystallographic methods. The vibrational bands of diagnostic value are compared to the values of the free ligand and the data are in good correlation with the X-ray results. Centrosymmetrical hydrogen bonded dimers are found, R22(10) in 1 and R22(8) in 2. 相似文献
11.
Reactions of [Pt2(μ-S)2(PPh3)4] with Ph3PbCl, Ph2PbI2, Ph2PbBr2 and Me3PbOAc result in the formation of bright yellow to orange solutions containing the cations [Pt2(μ-S)2(PPh3)4PbR3]+ (R3 = Ph3, Ph2I, Ph2Br, Me3) isolated as PF6− or BPh4− salts. In the case of the Me3Pb and Et3Pb systems, a prolonged reaction time results in formation of the alkylated species [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = Me, Et). X-ray structure determinations on [Pt2(μ-S)2(PPh3)4PbMe3]PF6 and [Pt2(μ-S)2(PPh3)4PbPh2I]PF6 have been carried out, revealing different coordination modes. In the Me3Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph2PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the {Pt2S2} metalloligand core can be tuned by variation of the heteroatom substituents. The species [Pt2(μ-S)2(PPh3)4PbR3]+ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh3 in all cases; for R = Ph, loss of PbPh2 occurs, yielding [Pt2(μ-S)2(PPh3)3Ph]+, while for R = Me, reductive elimination of ethane gives [Pt2(μ-S)2(PPh3)3PbMe]+, which is followed by loss of CH4. 相似文献
12.
V.N. Sapunov K. Mereiter R. Schmid K. Kirchner 《Journal of organometallic chemistry》1997,530(1-2):105-115
The three title cyanoruthenium complexes have been characterized by means of X-ray diffraction analysis, IR and NMR solution spectroscopies, as well as extended Hückel molecular orbital calculations examining the properties of the cyanide fragment changing with complexation and with the co-ligands Cp and PPh3. Explanations are given for crystallographic results of the C-N bond shortening upon complexation, the supershort (2.573 Å) bond length of N(H) N in the bridged complex, as well as the Ru-C-N and C-N-H-N-C bendings. Although the crystallographically found asymmetry of coordinated Cp is not significant, the MO calculations suggest a distorted endocyclic bond-length pattern indicative of the relative importance of σ and π bonding in the metalcyclopentadienyl interactions. 相似文献
13.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand. 相似文献
14.
Bhaskar Jyoti Sarmah 《Journal of organometallic chemistry》2010,695(6):781-785
The complex [Ru(CO)2(triphos-κ2P)Cl2] (1) underwent decarbonylation in dichloromethane solution under air over a period of about two weeks to afford the chelated monocarbonyl complex [Ru(CO)(triphos-κ3P)Cl2] (2). The Single Crystal X-ray structure of 2 showed a slightly distorted metal centred complex. The catalytic activity of one of the complexes [Ru(CO)(triphos-κ3P)Cl2] (2) was examined in the transfer hydrogenation of aromatic carbonyl compounds and was found to be efficient with conversion up to 100% in the presence of isopropanol/NaOH. 相似文献
15.
The reactions of [RuHCl(CO)(PPh3)3] with 8-hydroxy-2-methyl-quinoline-7-carboxylic acid and quinoline-2-carboxylic acid have been examined, and two novel ruthenium(II) complexes – [(PPh3)2RuH(CO)(C10H8NO3)] and [(PPh3)2RuCl(CO)(C9H6O2)] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis. 相似文献
16.
The reaction of Ln(NO3)3·6H2O (Ln=La, Ce, Pr or Nd) with a sixfold excess of Ph3PO in acetone formed [Ln(Ph3PO)4(NO3)3]·Me2CO. The crystal structure of the La complex shows a nine-coordinate metal centre with four phosphine oxides, two bidentate and one monodentate nitrate groups, and PXRD studies show the same structure is present in the other three complexes. In CH2Cl2 or Me2CO solutions, 31P NMR studies show that the complexes are essentially completely decomposed into [Ln(Ph3PO)3(NO3)3] and Ph3PO. Similar reactions in ethanol gave [Ln(Ph3PO)3(NO3)3] only. In contrast for Ln=Sm, Eu or Gd, only the [Ln(Ph3PO)3(NO3)3] are formed from either acetone or ethanol solutions. For the later lanthanides Ln=Tb–Lu, acetone solutions of Ln(NO3)3·6H2O and Ph3PO gave [Ln(Ph3PO)3(NO3)3] only, even with a large excess of Ph3PO, but from cold ethanol [Ln(Ph3PO)4(NO3)2]NO3 (Ln=Tb, Ho–Lu) were obtained. The structure of [Lu(Ph3PO)4(NO3)2]NO3 shows an eight-coordinate metal centre with four phosphine oxides and two bidentate nitrate groups. In solution in CH2Cl2 or Me2CO the tetrakis-complexes show varying amounts of decomposition into mixtures of [Ln(Ph3PO)3(NO3)3], [Ln(Ph3PO)4(NO3)2]NO3 and Ph3PO as judged by 31P{1H} NMR spectroscopy. The [Ln(Ph3PO)3(NO3)3] also partially decompose in solution for Ln=Dy–Lu, forming some tetrakis(phosphine oxide) species. 相似文献
17.
The structure of the product formed on boiling [RuNO(NH3)3(NO2)(OH)]Cl·0.5H2O in 3 M HNO3 is determined by XRD. The crystals belong to monoclinic symmetry. Crystallographic data for H11ClN6O8Ru are: a = 13.7924(4) ?, b = 6.9114(2) ?, c = 12.3577(4) ?, β = 111.863(1)°, V = 1093.27(6) ?3, Z = 4, d
calc = 2.185 g/cm3, space group Cc. The structure is built of complex [RuNO(NH3)3(H2O)Cl]2+ cations and NO3− anions. The compound is studied by IR spectroscopy and X-ray phase analysis.
Original Russian Text Copyright ? 2009 by V. A. Emel’yanov, E. V. Kabin, and I. A. Baidina
__________
Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 3, pp. 598–601, May–June, 2009. 相似文献
18.
The reaction of [RuHCl(CO)(PPh3)3] with 8-hydroxyquinoline has been examined and a novel ruthenium(II) complex – [RuCl(CO)(PPh3)2(C9H6NO)] – has been obtained. This compound has been studied by IR, UV–Vis (absorption and emission), 1H and 31P NMR spectroscopy, and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the complex have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the compound has been discussed on this basis. 相似文献
19.
Garth Cripps Sylvie Chardon-Noblat Alain Deronzier 《Journal of organometallic chemistry》2004,689(2):484-488
The selective in situ synthesis of trans and cis(CH3CN)-[Ru(bpy)(CO)2 (CH3CN)2]2+ isomers from the same [Ru(CO)2 (CH3CN)3]22+ dimer precursor but using either an electrochemical-chemical or chemical-electrochemical process is described. 相似文献
20.
Wolfgang Petz Florian
xler Bernhard Neumüller 《Journal of organometallic chemistry》2009,694(25):4094-4099
The cationic complexes [({Ph3P}2C)Ag(C{PPh3}2)]X (2+, X = Cl, BF4) with a linear arrangement of the ligands were obtained from the reaction of C(PPh3)2 (1) with the appropriate AgX in THF. The 31P NMR spectrum of the cation 2+ exhibits a doublet with J(Ag,P) = 15.3 Hz. The cation was also formed when the adduct O2C ← 1 was allowed to react with AgX in CH2Cl2 in the first step as shown by 31P NMR; however, deprotonation of the solvent finally produced the cation (HC{PPh3}2)+, (H1)+ quantitatively. In the absence of coordinating anions, the tricationic complex [({Ph3P}2CH)Ag(CH{PPh3}2)](BF4)3 (3), containing the cation (H1)+ as ligand, could be isolated by reacting AgBF4 with the salt (H1)(BF4). All compounds were characterized by IR and 31P NMR spectroscopy; the structures of the compounds [2]Cl·1.25THF, 3·5CH2Cl2, 3·4C2H4Cl2, and (H1)(BF4) could be established by X-ray analyses. 相似文献