首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions between 1,2-dichlorohexafluorocyclopentene and Ru(CCH)(dppe)Cp∗ or Ru(CCCCLi)(dppe)Cp∗ have given Ru(CC-c-C5F6Cl-2)(dppe)Cp∗ 4 and Ru(CCCC-c-C5F6Cl-2)(dppe)Cp∗ 7, respectively. Ready hydrolysis of 4 to the ketone Ru{CC[c-C5F4Cl(O)]}(dppe)Cp∗ 5 occurs, which can be converted to Ru{CC(c-C5F4Cl[C(CN)2])}(dppe)Cp∗ 6 by treatment with CH2(CN)2/basic alumina. Spectroscopic, electrochemical and XRD structural studies for 4-7 are reported: for 6, these suggest that the cyanated fluorocarbon ligand is a very powerful electron-withdrawing group.  相似文献   

2.
Addition of [I(py)2]BF4 to Ru(CCH)(dppe)Cp∗ gave the iodovinylidene [Ru(CCHI)(dppe)Cp∗]BF41, which could be deprotonated to Ru(CCI)(dppe)Cp∗ 2. The attempted preparation of Ru(CCCCI)(dppe)Cp∗, followed by derivatisation with tcne, gave the dienynyl Ru{CCC[C(CN)2]CIC(CN)2}(dppe)Cp∗ 3. The Pd(0)/Cu(I)-catalysed reaction of 3 with Ru{CCCCAu(PPh3)}(dppe)Cp∗ afforded Ru{CCCC(CN)2CC(CN)2Au(PPh3)}(dppe)Cp∗ 4 by formal replacement of I+ by [Au(PPh3)]+. XRD structures of 1-4 are reported.  相似文献   

3.
Several complexes have been obtained from reactions carried out in early attempts to prepare the diynyl complexes Ru(CCCCR)(dppe)Cp* (R = H, SiMe3). These have been identified crystallographically as the acyl complex Ru{CCC(O)Me}(dppe)Cp* (3), the cationic imido complex [Ru{CCC(NH2)Me}(dppe)Cp*]PF6 (4), the binuclear butenynylallenylidene [{Ru(dppe)Cp*}2{μ-CCC(OMe)CHCMeCC}]PF6 (5), and the bis(ethynyl)cyclobutenylidene [{Ru(dppe)Cp*}2{μ-CCC4H2(SiMe3)CC}]PF6 (6). NMR studies of 5 have revealed the existence of two isomers. Plausible routes for their formation from the putative butatrienylidene intermediate [Ru(CCCCH2)(dppe)Cp*]+ (A) are discussed.  相似文献   

4.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

5.
The synthesis of Fc(CC)3Ru(dppe)Cp (2) from Fc(CC)3SiMe3 and RuCl(dppe)Cp is described, together with its reactions with tcne to give the tetracyano-dienyl FcCCCC{C[C(CN)2]}2Ru(dppe)Cp (3) and -cyclobutenyl FcCCCC{CCC(CN)2C(CN)2}Ru(dppe)Cp (4), with Co2(μ-dppm)n(CO)8−2n (n = 0, 1) to give FcC2{Co2(CO)6}C2{Co2(CO)6}CCRu(dppe)Cp (5) and FcCCCCC2{Co2(μ-dppm)(CO)4}Ru(dppe)Cp (6), respectively, and with Os3(CO)10(NCMe)2 to give Os33-C2CCCC[Ru(dppe)Cp]}(CO)10 (7). On standing in solution, the latter isomerises to the cyclo-metallated derivative Os3(μ-H){μ3-C[Ru(dppe)Cp]CCC[(η-C5H3)FeCp]}(CO)8 (8). X-ray structural determinations of 1, 2, 6 and 7 are reported.  相似文献   

6.
The Pd(0)/Cu(I)-catalysed reactions between Co33-CBr) (CO)9 and W(CCCCH)(CO)3Cp gives the C5 complex {Cp(OC)3W}CCCCC{Co3(CO)9} (2). Similarly, Co33-CBr)(μ-dppm)(CO)7 and W(CCCCH)(CO)3Cp or Ru(CCCCH)(dppe)Cp* give {Cp(OC)3W}CCCCC{Co3(μ-dppm)(CO)7} and {Cp*(dppe)Ru}CCCCC{Co3(μ-dppmn)(CO)7} (5). An attempt to prepare a C3 analogue from Ru(CCH)(PPh3)2Cp and Co33-CBr)(CO)9 gave instead the acyl derivative {Cp(Ph3P)2Ru}CCC(O)C{Co3(CO)8(PPh3)} (7). The X-ray structures of 2, 5 and 7 are reported: the C5 chains in 2 and 5 have an essentially unperturbed -CC-CC-C formulation.  相似文献   

7.
The syntheses of several diynylgold(I) phosphine complexes, including Au(CCCCH){P(tol)3} (1), Au(CCCCSiMe3)(PR3) (R = Ph 2-Ph, tol 2-tol), Au(CCCCFc)(PPh3) (3), {(tol)3P}Au(CC)nAu{P(tol)3} [n = 2 (4), 3 (6), 4 (7)], {(Ph3P)Au}CCCC{Au[P(tol)3]} (5), [ppn][Au{CCCCAu[P(tol)3]}2] (8), [Au2(μ-I)(μ-dppm)2][Au(CCCCSiMe3)2] (9), Hg{CCCCAu(PR3)}2 (R = Ph 10-Ph, tol 10-tol) and {(triphos)Cu}CCCC{Au[P(tol)3]} (11) are described. Of these, the X-ray molecular structures of 1, 2-tol, 3, 4 and 9 have been determined.  相似文献   

8.
Wire like mono- and poly-nuclear molecules based on alkynyl ruthenium complexes whose core unit is trans-[Ru(CC-R)(R′CN)(dppe)2][PF6] are readily formed in soft conditions. The electronic dual character of the metallic unit, donor through the acetylide moiety, acceptor versus the nitrile ligand is exemplified through electrochemical studies of a series of ethynylferrocene and cyanoferrocene derivatives. A single crystal X-ray diffraction analysis of the [(dppe)2(PhCC)Ru(NC-C6H4-CN)Ru(CCPh)(dppe)2][2PF6] bimetallic complex 5 shows that the global structure of such complexes consists of wire type dimetallic units. With the availability of this versatile, direct, and simple route, a new class of extended rigid rod systems of nanometric size with multilevel electron transfers is readily accessed.  相似文献   

9.
Reactions of {(Ph3P)AuCC}2CC{CCAu(PPh3)}2 (1b), with Co3(μ-CBr)(μ-dppm)n(CO)9−2n (n = 0, 1) result in complete or partial elimination of AuBr(PPh3) to give the complexes {(OC)9Co33-CCC}2CC{CC-μ3-CCo3(CO)9}2 (3), trans-{(OC)7(μ-dppm)Co33-CCC}(HCC)CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (4), {(OC)7(μ-dppm)Co33-CCC}2CC(CCH){CC-μ3-CCo3(μ-dppm)(CO)7} (5) and {(OC)7(μ-dppm)Co33-CCC}2CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (6), which have been identified by spectroscopic methods and in the cases of 3, 4 and 5, by single-crystal X-ray diffraction methods.  相似文献   

10.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

11.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

12.
The synthesis of the new complexes Cp*(dppe)FeCC2,5-C4H2SR (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; 2a, R = CCH; 2b, R = CCSi(CH3)3; 2c, R = CCSi(CH(CH3)2)3; 3a, R = CC2,5-C4H2SCCH; 3c, R = CC2,5-C4H2SCCSi(CH(CH3)2)3) is described. The 13C NMR and FTIR spectroscopic data indicate that the π-back donation from the metal to the carbon rich ligand increases with the size of the organic π-electron systems. The new complexes were also analyzed by CV and the chemical oxidation of 2a and 3c was carried out using 1 equiv of [Cp2Fe][PF6]. The corresponding complexes 2a[PF6] and 3c[PF6] are thermally stable, but 2a[PF6] was too reactive to be isolated as a pure compound. The spectroscopic data revealed that the coordination of large organic π-electron systems to the iron nucleus produces only a weak increase of the carbon character of the SOMO for these new organoiron(III) derivatives.  相似文献   

13.
14.
The complexes trans-[Os(CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri31, H 2), trans,trans-[(dppe)2ClOs(CCC6H4-4-CC)RuX(dppe)2] (X = Cl 3, CCC6H4-4-CCSiPri34), trans-[Os(CCC6H4-4-CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri35, H 6), and trans,trans-[(dppe)2ClOs(CCC6H4-4-CCC6H4-4-CC)RuCl(dppe)2] (7) have been synthesized, and the identities of 1, 2, and 6 confirmed by single-crystal X-ray diffraction studies. Cyclic voltammetry shows that the mononuclear complexes 1, 2, 5, and 6 are oxidized at potentials within a narrow range (0.45-0.49 V), in processes centered on the osmium ethynyl neighbourhood and for simplicity assigned as OsII/III, while the heterobinuclear complexes 3, 4, and 7 exhibit lower oxidation potentials for OsII/III and a second oxidation process assigned in a similar fashion to RuII/III; the difference in potential between the Os- and Ru-localized processes decreases as the π-bridge is lengthened. UV-vis-NIR spectroelectrochemical studies on 1 and 5 reveal the appearance on oxidation of a low-energy band ascribed to chloro to metal-ethynyl charge transfer. Osmium-centered oxidation at the heterobinuclear complexes 4 and 7 results in appearance of a low-energy band, which blue-shifts and increases in intensity on further oxidation to 42+ and 72+.  相似文献   

15.
Photolysis of a hexane solution containing ironpentacarbonyl, 1-ferrocenyl-4-phenyl-1,3-butadiyne at low temperature yields six new products: [Fe(CO)222-PhCCCC(Fc)C(CCPh)C(Fc)Fe(CO)3}-μ-CO] (1), [Fe2(CO)6{μ-η1122-PhCCCC(Fc)-C(O)-C(Fc)CCCPh}] (2), [Fe2(CO)6{μ-η1122-FcCC(CC Ph)-C(O)-C(Fc)CCCPh}] (3), [Fe2(CO)6{μ-η1122-FcCCCC(Fc)-C(O)-C(Fc)CCCPh}] (4), [Fe(CO)3{μ-η2: η2-[FcCC(CCPh)C(CCPh)C(Fc)}CO] (5) and [Fe(CO)3{μ-η2: η2-[FcCC(CCPh)C(CCPh)C(Fc)}CO] (6) formed by coupling of acetylenic moieties with CO insertion on metal carbonyl support. In presence of CO, formation of another new product 2,5-bis(ferrocenyl)-3,6-bis(tetracarbonylphenylmaleoyliron)quinone (7) was observed which on further reaction with ferrocenylacetyene gave the quinone, 2,5-bis(ferrocenyl)-3,6-bis(ethynylphenyl)quinone (8). Structures of 1-5 and 8 were established crystallographically.  相似文献   

16.
The five-coordinate complex [RuCl(dppe)2]OTf ([2]OTf) is obtained in high yield by the sequential reduction of RuCl3 · nH2O to RuCl2(PPh3)3, subsequent phosphine substitution to give trans-RuCl2(dppe)2 (trans-1) and finally chloride abstraction (AgOTf, CH2Cl2). The use of [2]OTf as an entry point to mono-acetylide complexes trans-RuCl(CCC6H4R-4)(dppe)2 (3) is described, and represents an alternative route to the long-standing methods based on cis-RuCl2(dppe)2 (cis-1), which is always prepared as a mixture with the more thermodynamically stable trans isomer when prepared by phosphine substitution reactions of RuCl2(dmso)4. The molecular structures of [2]OTf, trans-RuCl(CCC6H4OMe-4)(dppe)2 (3b), trans-RuCl(CCC6H4Me-4)(dppe)2 (3c) and trans-RuCl(CCC6H4CO2Me-4)(dppe)2 (3e) are described. A facile and reproducible synthesis of cis-1 is also reported.  相似文献   

17.
The first luminescent rhenium(I)-gold(I) hetero organometallics, Re{phenAu(PPh3)}(CO)3Cl (3) and Re{(PPh3)AuphenAu(PPh3)}(CO)3Cl (4), have been prepared using the gold(I) complex AuCl(PPh3) (PPh3 = triphenylphosphine) and the novel rhenium(I) complexes Re(phenH)(CO)3Cl (5) (phenH = 3-ethynyl-1,10-phenanthroline) or Re(HphenH)(CO)3Cl (6) (HphenH = 3,8-bis(ethynyl)-1,10-phenanthroline). All the present rhenium(I) complexes 3-6 were revealed to possess a facial configuration (fac-isomer) with respect to the three carbonyl ligands. The main frameworks for these new gold(I) organometallics were constructed by the Au-C σ-bonding (with the η1-type coordination) between the ethynylphenanthrolines and the Au(I) phosphine unit. Re(I)-Au(I) heterometallics 3 and 4 have shown single phosphorescence from the 3MLCT excited state and this observation can be interpreted in terms of the efficient intramolecular energy transfer from the Au(I) unit to the Re(I) unit.  相似文献   

18.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

19.
Heterobimetallic {cis-[Pt](μ-σ,π-CCPh)2}[Cu(NCMe)]BF4 (3a: [Pt] = (bipy)Pt, bipy = 2,2′-bipyridine; 3b: [Pt] = (bipy′)Pt, bipy′ = 4,4′-dimethyl-2,2′-bipyridine) is accessible by the reaction of cis-[Pt](CCPh)2 (1a: [Pt] = (bipy)Pt, 1b: [Pt] = (bipy′)Pt]) with [Cu(NCMe)4]BF4 (2). Substitution of NCMe by PPh3 (4) can be realized by the reaction of 3a with 4, whereby [{cis-[Pt](μ-σ,π-CCPh)2}Cu(PPh3)]BF4 (5) is formed. On prolonged stirring of 3 and 5, respectively, NCMe and PPh3 are eliminated and tetrametallic {[{cis-[Pt](η2-CCPh)2}Cu]2}(BF4)2 (6) is produced. Addition of an excess of NCMe to 6 gives heterobimetallic 3a.When instead of NCMe or PPh3 chelating molecules such as bipy (7) are reacted with 3a then the heterobimetallic π-tweezer molecule [{cis-[Pt](μ-σ,π-CCPh)2}Cu(bipy)]BF4 (8) is formed. Treatment of 8 with another equivalent of 7 produced [Cu(bipy2)]BF4 (9) along with [Pt](CCPh)2. However, when 3b is reacted with 1b in a 1:1 molar ratio then 10 and 11 of general composition [{[Pt](CCPh)2}2Cu]BF4 are formed. These species are isomers and only differ in the binding of the PhCC units to copper(I). A possible mechanism for the formation of 10 and 11 is presented.The solid state structures of 6, 10 and 11 are reported. In 11 the [{cis-[Pt](μ-σ,π-CCPh)2}2Cu]+ building block is set-up by two nearly orthogonal positioned bis(alkynyl) platinum units which are connected by a Cu(I) ion, whereby the four carbon-carbon triple bonds are unsymmetrical coordinated to Cu(I). In trimetallic 10 two cis-[Pt](CCPh)2 units are bridged by a copper(I) center, however, only one of the two PhCC ligands of individual cis-[Pt](CCPh)2 fragments is η2-coordinated to Cu(I) giving rise to the formation of a [(η2-CCPh)2Cu]+ moiety with a linear alkyne-copper-alkyne arrangement (alkyne = midpoint of the CC triple bond). In 6 two almost parallel oriented [Pt](CCPh)2 planes are linked by two copper(I) ions, whereby two individual PhCC units, one associated with each Pt building block, are symmetrically π-coordinated to Cu.  相似文献   

20.
Reaction of cis-[RuCl2(dppm)2] (dppm = 1,2-bis(diphenylphosphino)methane) with PhCCH and NaPF6 utilising methanol as solvent results in the formation of the η3-butenynyl complex [Ru(η3-PhCCCCHPh)(dppm)2][PF6] in good yield. Similar reactions with ButCCH and PrnCCH resulted in the corresponding alkyl-substituted complexes and all three of these compounds have been characterised by NMR spectroscopy and X-ray crystallography. The mechanism of this reaction has been probed by employing labelling experiments with both PhCCD and PhC13CH allowing the identity of possible intermediates in the reaction to be determined. Furthermore, [Ru(η3-PhCCCCHPh)(dppm)2][PF6] has been shown to be an effective regio- and stereo-selective catalyst for the dimerisation of PhCCH to Z-PhCCCHCHPh in the absence of solvent. In contrast, no evidence for the formation of alkyne coupling was obtained from the reaction of cis-[RuCl2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with PhCCH and NaPF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号