首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

2.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

3.
The reactions of indium monohalides, InX with haloforms, CHX3, in 1,4-dioxane (diox), produce the dioxane adducts of dihalogeno-dihalogenomethyl-indium(III), X2In(diox)nCHX2 (X = Cl, Br, n = 1; X = I, n = 2) compounds. The ionic derivative [(C2H5)4N] [Cl3InCHCl2] was prepared and its crystal structure determined by X-ray means. The reactions of the X2In(diox)nCHX2 compounds are significantly different from those of the related X2InCH2X compounds. The dihalogenomethyl derivatives react with strong electrophiles suggesting dihalogenomethyl substituents of mild nucleophilic character, while the carbon atoms in the halogenomethyl derivatives are electrophilic.  相似文献   

4.
Halogenomethyl-dihalogen-indium(III) compounds X2InCH2X (X = Br, I) obtained from indium monohalides and methylene dihalides were reacted with the soft donor ligands dialkylsulfides, R2S (R = CH3, CH2Ph) to afford the corresponding dialkylsulfonium methylide complexes of InX3, X3InCH2SR2 (X = Br, R = CH3, 1; X = I, R = CH3, 2; X= I, R = CH2Ph, 3). Compound 1 was reacted with the hard donor ligands dimethylsulfoxide or triphenylphosphine oxide to give the corresponding 1:1 adduct, Br3(L)InCH2S(CH3)2 (L = (CH3)2SO, 4; L = (C6H5)3PO, 5). Compounds 1-5 were fully characterized in solution by NMR spectroscopy and in the solid state by X-ray methods.  相似文献   

5.
Two-electron reduction of PdX2(NHC)2 with Groups 1, 2 metals (K, Mg) is a convenient route to Pd(NHC)2 complexes including Pd(IMe)2 (2a), isolated and crystallographically characterized as the least sterically encumbered d10 M(0)L2 species to date. 2a exhibits a regular linear geometry and modest Lewis acidity to coordinating solvents and additional IMe. In contrast to its analogs with bulkier NHC = ItBu and IPr, 2a undergoes cleanly net oxidative addition of the Me-S(O)Me bond of DMSO, forming trans-PdMe(S(O)Me)IMe2 (3) at RT. DFT calculations suggest this reaction to proceed by substitution of IMe by κS-DMSO followed by concerted C-S oxidative addition to Pd with a single IMe, with a preference of ca. 10 kcal/mol in the effective ΔGs over the direct pathway. Calculations also identify two facile intramolecular pathways for racemization of Pd(II) methylsulfinyl complexes at sulfur.  相似文献   

6.
Room temperature reaction of [Pd2(dba)3]/PR3 or [Pt(C2H4)(PR3)2] (dba = dibenzylideneacetone; R = Et, Bu) with the diselenides (R′Se)2 (R′ = Ph, Fc) yielded the oxidative addition products trans-[M(SeR′)2(PR3)2] (M = Pd, Pt). These have been characterised by multinuclear NMR and UV-Vis spectroscopy, mass spectrometry, and, in the cases of trans-[Pt(SePh)2(PR3)2] (R = Et, Bu) and trans-[Pt(SeFc)2(PBu3)2], also by X-ray crystallography.  相似文献   

7.
The reaction of fluorosilanes XYSiF2 (X = Y = F; X = F, Y = Ph; X = Ph, Y = Me) with diethanolamines and their O-trimethylsilyl derivatives affords novel Si-fluoro substituted quasisilatranes 3, 5 and 9. These compounds were characterized by the multinuclear NMR spectroscopy and X-ray diffraction analysis. Experimental and theoretically calculated electron density distribution functions in crystal structure of 9 have shown that the N → Si coordination bond corresponds to polar bond with pronounced ionic contribution. Calculated N → Si bond order in the compound 9 does not exceed 1/3 of the normal Si-N bond. A strong N → Si coordination bond exists in compounds 3, 5 and 9 the length of which varies in the range 1.98-2.175 Å.  相似文献   

8.
We report a combined experimental and computational study of new rhenium tricarbonyl complexes based on the bidentate heterocyclic N-N ligands 2-(4-methylpyridin-2-yl)benzo[d]-X-azole (X = N-CH3, O, or S) and 2-(benzo[d]-X-azol-2-yl)-4-methylquinoline (X = N-CH3, O, or S). Two sets of complexes are reported. Chloro complexes, described by the general formula Re(CO)3[2-(4-methylpyridin-2-yl)benzo[d]-X-azole]Cl (X = N-CH3, 1; X = O, 2; X = S, 3) and Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]Cl (X = N-CH3, 4; X = O, 5; X = S, 6) were synthesized heating at reflux Re(CO)5Cl with the appropriate N-N ligand in toluene. The corresponding pyridine set {Re(CO)3[2-(4-methylpyridin-2-yl)benzo-X-azole]py}PF6 (X = N-CH3, 7; X = O, 8; X = S, 9) and {Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]py}PF6 (X = N-CH3, 10; X = O, 11; X = S, 12) was synthesized by halide abstraction with silver nitrate of 1-6 followed by heating in pyridine and isolated as their hexafluorophosphate salts. All complexes have been fully characterized by IR, NMR, electrochemical techniques and luminescence. The crystal structures of 1 and 7 were obtained by X-ray diffraction. DFT and time-dependent (TD) DFT calculations were carried out for investigating the effect of the organic ligand on the optical properties and electronic structure of the reported complexes.  相似文献   

9.
TeX4 (X = Cl, Br) react in HCl/HBr with [Ph(CH3)2Te]X (X = Cl, Br) to give [PhTe(CH3)2]2[TeCl6] (1) and [PhTe(CH3)2]2[TeBr6] (2). The reaction of PhTeX3 (X = Cl, Br, I) in cooled methanol with [(Ph)3Te]X (X = Cl, Br, I) leads to [Ph3Te][PhTeCl4] (3), [Ph3Te][PhTeBr4] (4) and [Ph3Te][PhTeI4] (5). In the lattices of the telluronium tellurolate salts 1 and 2, octahedral TeCl6 and TeBr6 dianions are linked by telluronium cations through Te?Cl and Te?Br secondary bonds, attaining bidimensional (1) and three-dimensional (2) assemblies. The complexes 3, 4 and 5 show two kinds of Te?halogen secondary interactions: the anion-anion interactions, which form centrosymmetric dimers, and two identical sets of three telluronium-tellurolate interactions, which accomplish the centrosymmetric fundamental moiety of the supramolecular arrays of the three compounds, with the tellurium atoms attaining distorted octahedral geometries. Also phenyl C-H?halogen secondary interactions are structure forming forces in the crystalline structures of compounds 3, 4 and 5.  相似文献   

10.
A series of Ru(II) and Ru(III) complexes of the types [RuX(CO)(EPh3)2L] (X = H, E = P; X = Cl, E = P or As) and [RuX2(EPh3)2L] (X = Cl, E = P or As; X = Br, E = As, L = monoanion of dehydroacetic acid) have been synthesized in order to explore their biological activities, such as DNA-binding and antibacterial activity. The complexes were characterized by analytical and spectroscopic techniques. The crystal and molecular structure of [RuCl2(AsPh3)2(L)] has been determined by single crystal XRD. The cyclic voltammograms of the complexes in acetonitrile displayed either quasi-reversible or irreversible redox couples based on the metal centre. The ligand, dehydroacetic acid (DHA) and its metal complexes were tested against five pathogenic bacteria. Absorption titration and cyclic voltammetric studies revealed that the complexes interact with Herring Sperm ds DNA through different binding modes to different extents.  相似文献   

11.
All the steps of the proposed technique, from the synthesis of single-source precursors to the preparation of CoPd and CoPt nanoalloys, are described. The double complex salts (DCS) [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt), which were synthesized by mixing solutions containing [M(NH3)4]2+ cations and [Co(C2O4)2(H2O)2]2− anions, have been used as precursors. The salts obtained were characterized by IR spectroscopy, thermal analysis, XRD and single crystal X-ray diffraction. The prepared compounds crystallize in the monoclinic (space group I2/m, M = Pd) and orthorhombic (space group I222, M = Pt) crystal systems. Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-600 °C results in the formation of nanoalloys powders (random solid solution Co0.50Pd0.50 and chemically ordered CoPt). The size of the bimetallic particles varied from 5 to 20 nm. Order-disorder structural transformations in Co0.50Pt0.50 nanoalloys were studied. The magnetic properties of both chemically disordered Co0.50Pd0.50 and ordered CoPt clusters have also been measured.  相似文献   

12.
Density functional theory studies on a series of Cp2Co2E2 derivatives (E = S and PX; X = H, Cl, OH, OMe, NH2, NMe2) predict global minimum butterfly structures with one Co-Co bond for the “body” of the butterfly and four Co-E bonds at the edges of the “wings” of the butterfly. Tetrahedrane structures with both Co-Co and E-E bonds are higher in energy for Cp2Co2S2 and Cp2Co2(PH)2 and are not found in the other systems. This differs from the corresponding Fe2(CO)6S2 and Fe2(CO)6(PX)2 derivatives where tetrahedrane structures are predicted to be the lowest energy structures for all cases except X = NR2 and OH and such a tetrahedrane structure is found experimentally for Fe2(CO)6S2. The butterfly structures for the Cp2Co2E2 derivatives are of two types. For Cp2Co2(PX)2 (X = H, OH, OMe, NH2, NMe2) the lowest energy structures are unsymmetrical butterflies Cp2Co2(P)(PX2) with two X groups on one phosphorus atom and a lone pair on the other (naked) phosphorus atom. Related low-energy unsymmetrical butterfly Fe2(CO)6(P)(PX2) structures, not observed in previous theoretical studies, are now found for the corresponding Fe2(CO)6(PX)2 derivatives. Symmetrical butterfly singlet diradical structures with one X group on each phosphorus atom in relative cis or trans positions are also found for the Cp2Co2(PX)2 derivatives and are the global minima for Cp2Co2(PCl)2 as well as Cp2Co2S2. In all cases the cis structures are of lower energy than the corresponding trans structures. Rhombus structures having neither Co-Co nor E-E bonds are also found for all of the Cp2Co2(PX)2 derivatives but always at higher energies than the butterfly structures, ranging from 17 to 29 kcal/mol above the global minima.  相似文献   

13.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

14.
The heteroditopic, P-N-chelating ligand diphenylphosphino(phenyl pyridin-2-yl methylene)amine (1) has been synthesised via a simple ‘one-pot’ procedure and its donor characteristics assessed. The neutral [MX(Y)(12-P-N)] (3, M = Rh, X = Cl, Y = CO; 4, M = Pd, X = Y = Cl; 5, M = Pd, X = Cl, Y = Me; 6, M = Pt, X = Y = Cl; 7, M = Pt, X = Cl, Y = Me; 8, M = Pt, X = Y = Me) and cationic [Pd(Me)(MeCN)(12-P-N)][Z] (9, Z = B{3,5-(CF3)2-C6H3}4; 10, Z = PF6) complexes of 1 have been prepared and characterised. The solid-state structures of complexes 3, 4, 6 and 7 have been established by X-ray crystallography. Reactions of [PdCl(Me)(12-P-N)] towards CO and tBuNC have been investigated, affording the corresponding η1-acyl (12) and -iminoacyl (14) complexes, respectively. Similar insertion chemistry is observed for the cationic derivative 9. Treatment of the acyl complex 12 with ethene at elevated pressure establishes an equilibrium between the starting material and the product resulting from insertion, 13. Under catalytic conditions, combination of palladium(II) with 1 in MeOH affords a selective initiator for the formation of 4-oxo-hexanoic acid methyl ester (15) from CO/ethene (38 bar, 90 °C).  相似文献   

15.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

16.
Fe(CO)4X2 complexes [X = I (1), Br(1′)] react with phosphine ligands L (L = PMe3, PEt3, PMe2Ph, PMePh2, PPh3) via a two-step mechanism: in the first step fac-Fe(CO)3LX2 complexes are formed; in the second step two parallel pathways, a and b, are observed; in pathway a, reductive elimination with formation of equimolar amounts of Fe(CO)3L2 (5) and phosphonium salts [LX]+X is observed; in pathway b, disubstituted dihalide complexes cis,trans,cis-Fe(CO)2L2X2 are formed. The relative weights of pathways a and b depend on the basicity, steric hindrance and concentration of ligand L, on the nature of the halogen and on temperature. A radical mechanism which accounts for most of the experimental results is proposed.  相似文献   

17.
Palladium(II) complexes of N-[(2-pyridyl)methyliden]-α(or β)-aminonaphthalene (α or β-NaiPy) are reported in this work. They are spectroscopically characterized along with some mixed ligand complexes, using diimine and azoimine functions. The single crystal X-ray structure of [Pd(N-(2-pyridyl)methyliden-β-aminonaphthalene)Cl2] has been determined. Luminescence properties of the complexes exhibit a ligand centered π–π emission. Quantum yields (?) have been calculated and it has been observed that the complexes of α-NaiPy show higher ? values than the complexes of β-NaiPy. Lifetime measurements suggest bi-exponential decay and the average fluorescence lifetime varies from 1.4 to 6.8 ns. The spectroscopic properties are correlated with DFT and TD-DFT calculations in two complexes, Pd(β-NaiPy)X2 (X = Cl, I) and they are compared with the free ligand results.  相似文献   

18.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

19.
Mononuclear palladium(II) complexes containing a pyrazole-thioether ligand, with general formula trans-[Pd(X)2(bddo)] (X = CN (1), SCN (2) or N3 (3); bddo = 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane), have been prepared. Similar reactivity carried out with pyridine or triphenylphosphine has been assayed. When pyridine is used, a mixture of [Pd(bddo)(py)2](BF4)2 ([4](BF4)2) and [Pd(bddo)](BF4)2 is obtained. When triphenylphosphine is used, only [Pd(bddo)](BF4)2 is obtained. The complexes have been characterised by elemental analyses, conductivity measurements, IR and NMR spectroscopies. X-ray crystal structure of trans-[Pd(SCN)2(bddo)] (2) is presented. In this complex the metal atom is coordinated by the two azine nitrogen atoms of the pyrazole rings and two SCN anions in trans disposition.  相似文献   

20.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号